Function equals

==
public class Object { a0
/** Return true iff this object is Obiect
* the same as ob */ \J;
public boolean equals(Object b) { equals(Object)
return this == b;
}
}
This gives a null-pointer
exception:
x.equals(y) is same as null.equals(y)

x=y
except when x is null!

y
Object Object

Function equals in class Animal
] a0

public class Animal {
/** = “h is an Animal with the same

Object

equals(Object)
values in its fields as this Animal” */ N .
public boolean equals (Object h) { toString() M
X . . name age
if (!(h instanceof Animal)) AniszString, llgl
b . equals()
Animal ob= (Anjmal) h; toString()

return name.equals(ob.name) &&
age == ob\age;

1. Because of h is an Animal in spec,
need the test h instanceof Animal

Overview references to sections in text
|

a

Note: We've covered everything in JavaSummary.pptx!
o What is recursion? 7.1-7.39 slide 1-7

0 Base case 7.1-7.10 slide 13

o How Java stack frames work 7.8-7.10 slide 28-32

Overriding function equals

|
Override function equals in a class to give meaning to:

“these two (possibly different) objects of the class have
the same values in some of their fields”

For those who are mathematically inclined, like
any equality function, equals should be reflexive,
symmetric, and transitive.

Reflexive: b.equals(b)
Symmetric: b.equals(c) = c.equals(b)
Transitive: if b.equals(c) and c.equals(d), then b.equals(d)

Function equals in class Animal
] a0

Object

public class Animal {

/** = “h is an Animal with the same equals(Object)
values in its fields as this Animal” */ N .
public boolean equals (Object h) { toString() M
) 3 . name age []
if (!(h instanceof Animal)) Animal(Stfing, int)
return false;' equals()
Animal ob= (Animal) h; toString()

return name.eduals(ob.name) &&
age == of.age;

2. In order to be able tp reference fields in partition Animal,
need to cast h to Animal

9/14/15

9/14/15

Function equals in class Animal
a0

public class Animal { \Obje—ct

/%% = “h is an Animal with the same equals(Object)

values in its fields as this Animal” */ N -
public boolean equals (Object h) { toString() M
name [T age]

if (!(h instanceof Animal)) Animal(String, int)
return false; equals()
Animal ob= (Animal) h; toString()

return name.equals(ob.name) &&

age == op.age;
}

3. Use String equals A\nction to check for equality of String
values. Use == for primitive types

Why can’t the parameter type be Animal?

a0
public class Animal { \Obje—ct

/%% = “h is an Animal with the same equals(Object)

values in its fields as this Animal” */ N -
public boolean equals (Animal h) { toSiring() [Animal_|
name age
if (!(h instanceof Animal)) Animz%]'ingg, i%]
return false; equals()
Animal ob= (Animal)) h; toString()
return name.equals(ob.name) &&
age == ob.age;

What is wrong with this?

Sum the digits in a non-negative integer

/** return sum of digits in n.
* Precondition: n>=0 */

public static int sum(int n)
if (n < 10) returirn; sum calls itself!

/I { n has at least two digj
// return first digit + s
return sum(n/10)

}

of rest
n%10 ;

E.g.sum(7) =7
E.g. sum(8703) = sum(870) + 3;

Two issues with recursion

/** return sum of digits in n.
* Precondition: n>=0 */

public static int sum(int n)
if (n < 10) returmra;__ | sum calls itself!

// { n has at least two digi
// return first digit +
return sum(n/105”"+ n%10 +;

}

1. Why does it work? How does the method executed?

2. How do we understand a given recursive method or how do we
write/develop a recursive method?

Stacks and Quevues

!

stack grows Stack: list with (at least) two basic ops:

* Append an element
Americans wait in a * Remove first element
line the Brits waitina First-In-First-Out (FIFO)
queue !

top element * Push an element onto its top
2nd element * Pop (remove) top element
Last-In-First-Out (LIFO)
bottom Like a stack of trays in a cafeteria
element
first second last Queue: list with (at least) two basic ops:

Stack Frame

A “frame” contains information local variables
about a method call:

At runtime Java maintainsa a frame parameters

stack that contains frames
for all method calls that are being return info
executed but have not completed.

Method call: push a frame for call on stack assign argument
values to parameters execute method body. Use the frame for
the call to reference local variables parameters.

End of method call: pop its frame from the stack; ifitis a
function leave the return value on top of stack.

Frames for methods sum main method in the system

public static int sum(int n) {
if (n < 10) return n;
return sum(n/10) + n%10;

|
s

public static void main(
String[] args) {
int r= sum(824);
System.out.println(r);
y
s

Frame for method in the system
that calls method main

frame:

frame:

frame:

return info

Example: Sum the digits in a non-negative integer

r___args___
return info

?
return info

public static int sum(int n) {
if (n < 10) return n;
return sum(n/10) + n%10;

|
s

public static void main(
String[] args) {
int r= sum(824);
System.out.println(r);
}
s

Frame for method in the system
that calls method main: main is
then called

main

system

r___args___
return info

?
return info

9/14/15

Example: Sum the digits in a non-negative integer

public static int sum(int n) {
if (n < 10) return n;
return sum(n/10) + n%10;

1
s

public static void main(
String[] args) {
int r= sum(824);
System.out.println(r);

1
s

Method main calls sum:

main

system

n 824
return info
r___args__
return info

Example: Sum the digits in a non-negative integer

public static int sum(int n) {
if (n < 10) return n;
return sum(n/10) + n%10;

1
s

public static void main(
String[] args) {
int r= sum(824);
System.out.println(r);

1
s

?
return info

n >= 10 sum calls sum:

main

system

n_8
return info

n 824

return info
r___args__
return info

?
return info

Example: Sum the digits in a non-negative integer

public static int sum(int n) {
if (n < 10) return n;
return sum(n/10) + n%10;

|
s

public static void main(
String[] args) {
int r= sum(824);
System.out.println(r);

;

n >=10. sum calls sum:

main

system

n_8_

return info
n_82

retutfl info

n 824

return info
r___args___
return info

Example: Sum the digits in a non-negative integer

public static int sum(int n) {
if (n < 10) return n;
return sum(n/10) + n%10;

|
s

public static void main(
String[] args) {
int r= sum(824);
System.out.println(r);

;

?
return info

n < 10 sum stops: frame is popped
and n is put on stack:

main

system

n8

retudn info
n_82

return info

n 824

return info
r___args___
return info

?

return info

Example: Sum the digits in a non-negative integer

Example: Sum the digits in a non-negative integer

public static int sum(int n) {

if (n < 10) return n;

return sum(n/10) + n%10;
1

i
public static void main(10

String[] args) {
int r= sum(824); n 824

public static int sum(int n) {
if (n < 10) return n;
return sum(n/10) + n%10;
! 8
n 82
public static void main(retl®n info
String[] args) {
int r= sum(824); n &
System.out.println(r); return info
} main |F—_ a@rgs_
return info
Using return value 8 stack computes ?
8 +2 =10 pops frame from stack puts return info

return value 10 on stack

System.out.printIn(r); retdrh info
} main |F— args_
return info
Using return value 10 stack computes ?
10 + 4 = 14 pops frame from stack return info

puts return value 14 on stack

9/14/15

Example: Sum the digits in a non-negative integer

public static int sum(int n) {
if (n < 10) return n;
return sum(n/10) + n%10;

1
s

public static void main(
String[] args) {
int r= sum(824);

System.out.println(r); 14
} main ri4 args__
return info
Using return value 14 main stores ?
14 in r and removes 14 from stack return info

Summary of method call execution

Memorize this!

1. A frame for a call contains parameters local variables and
other information needed to properly execute a method call.

o 2. To execute a method call: push a frame for the call on the
stack, assign values to parameters, execute method body, pop
frame for call from stack, and (for a function) push returned
value on stack

When executing method body look in frame
for call for parameters and local variables.

Questions about local variables

public static void m(...) { public static void m(...) {
int d;
while (...) {
intd=5; while (...) {
.. d=35;
}
} ¥
¥

In a call m()
when is local variable d created and when is it destroyed?
Which version of procedure m do you like better? Why?

Recursion is used extensively in math

Math definition of n factorial E.g. 31 =3%¥2*1=6

0l=1

. Easy to make math definition
n!'=n*(n-1)! forn>0

into a Java function!
Math definition of b® for ¢ >=0 public static int fact(int n) {
p0=1 if (n ==0) return 1;

C_ c-1
b*=b>b fore>0 return n * fact(n-1);

Lots of things defined recursively:
expression grammars trees ...
We will see such things later

Two views of recursive methods

o0 How are calls on recursive methods executed?
We saw that. Use this only to gain
understanding / assurance that recursion works

0 How do we understand a recursive method —
know that it satisfies its specification? How do

we write a recursive method?

This requires a totally different approach.
Thinking about how the method gets executed
will confuse you completely! We now introduce

this approach.

Understanding a recursive method

Step 1. Have a precise spec!

Step 2. Check that the method works in the base case(s): Cases
where the parameter is small enough that the result can be
computed simply and without recursive calls.

If n < 10 then n consists of
a single digit. Looking at the
spec we see that that digit is

the required sum.

/** = sum of digits of n.
* Precondition: n>=0 */
public static int sum(int n) {
if (n < 10) return n;

// n has at least two digits
return sum(n/10) + n%10 ;

}

9/14/15

Understanding a recursive method

Step 1. Have a precise spec!

Step 2. Check that the method
works in the base case(s).
Step 3. Look at the recursive
case(s). In your mind replace
each recursive call by what it

/** = sum of digits of n.
* Precondition: n>=0 */
public static int sum(int n) {
if (n < 10) return n;

// n has at least two digits
return sum(n/10) + n%10 ;

}

does according to the method spec and verify that the correct result

is then obtained.

return sum(n/10) + n%10;

return (sum of digits of n/10) + n%10;

//e.g.n=843

Understanding a recursive method

Step 1. Have a precise spec!

Step 2. Check that the method
works in the base case(s).

Step 3. Look at the recursive
case(s). In your mind replace
each recursive call by what it

/** = sum of digits of n.
* Precondition: n>=0 */
public static int sum(int n) {
if (n < 10) return n;

// n has at least two digits
return sum(n/10) + n%10 ;

}

does acc. to the spec and verify correctness.

Step 4. (No infinite recursion) Make sure that the args of recursive
calls are in some sense smaller than the pars of the method.

n/10 < n

Understanding a recursive method

Step 1. Have a precise spec!

Step 2. Check that the method
works in the base case(s).

Step 3. Look at the recursive
case(s). In your mind replace
each recursive call by what it
does according to the spec and
verify correctness.

Important! Can’t do step 3 without it

Once you get the hang of it this is
what makes recursion easy! This
way of thinking is based on math
induction which we will see later
in the course.

Step 4. (No infinite recursion) Make sure that the args of recursive
calls are in some sense smaller than the pars of the method

Writing a recursive method

Step 1. Have a precise spec!

Step 2. Write the base case(s): Cases in which no recursive calls
are needed Generally for “small” values of the parameters.

Step 3. Look at all other cases. See how to define these cases
in terms of smaller problems of the same kind. Then
implement those definitions using recursive calls for those
smaller problems of the same kind. Done suitably point 4 is

automatically satisfied.

Step 4. (No infinite recursion) Make sure that the args of recursive
calls are in some sense smaller than the pars of the method

Examples of writing recursive functions

For the rest of the class we demo writing recursive functions
using the approach outlined below. The java file we develop
will be placed on the course webpage some time after the
lecture.

Step 1. Have a precise spec!

Step 2. Write the base case(s).

Step 3. Look at all other cases. See how to define these cases
in terms of smaller problems of the same kind. Then
implement those definitions using recursive calls for those
smaller problems of the same kind.

The Fibonacci Function

Mathematical definition:
fib(0) = 0 two base cases!
fib(1) =1 :>
fib(n) = fib(n = 1) + fib(n = 2) n>2

Fibonacci sequence: 011235813... 4
Fibonacci (Leonardo
Pisano) 1170-1240?

/** = fibonacci(n). Pre: n>=0 */
static int fib(int n) {
if (n <= 1) return n;
//{1<n}

return fib(n-2) + fib(n-1); Giovanni Paganucci
} 1863

Statue in Pisa Italy

Check palindrome-hood

A String palindrome is a String that reads the same backward
and forward.

A String with at least two characters is a palindrome if
o (0) its first and last characters are equal and

o (1) chars between first & last form a palindrome:

I_ have to be the same ——l

e.g. AMANAPLANACANALPANAMA

have to be a palindrome

A recursive definition!

Example: Is a string a palindrome?

/** ="g is a palindrome" */
public static boolean isPal(String s) {
if (s.length() <= 1)
return true;

/I { s has at least 2 chars }
int n=s.length()-1;
return s.charAt(0) == s.charAt(n) && isPal(s.substring(1,n));

isPal(“racecar”) returns true
isPal(“pumpkin”) returns false

A man a plan a caret a ban a myriad a sum a lac a liar a hoop a pint a catalpa a gas
an oil a bird a yell a vat a caw a pax a wag a tax a nay a ram a cap a yam a gay a tsar
a wall a car a luger a ward a bin a woman a vassal a wolf a tuna a nit a pall a freta
watt a bay a daub a tan a cab a datum a gall a hat a fag a zap a say a jaw a lay a wet
a gallop a tug a trot a trap a tram a torr a caper a top a tonk a toll a ball a fair a sax a
minim a tenor a bass a passer a capital a rut an amen a ted a cabal a tang a sun an ass
amaw a sag a jam a dam a sub a salt an axon a sail an ad a wadi a radian a room a
rood a rip a tad a pariah a revel a reel a reed a pool a plug a pin a peek a parabola a
dog a pat a cud a nu a fan a pal a rum a nod an eta a lag an eel a batik a mug a mot a
nap a maxim a mood a leek a grub a gob a gel a drab a citadel a total a cedar a tap a
gag a rat a manor a bar a gal a cola a pap a yaw a tab a raj a gab a nag a pagan a bag
a jar a bat a way a papa a local a gar a baron a mat a rag a gap a tar a decal a tota
led a tic a bard a leg a bog a burg a keel a doom a mix a map an atom a gum a kit a
baleen a gala a ten a don a mural a pan a faun a ducat a pagoda a lob a rap a keep a
nip a gulp a loop a deer a leer a lever a hair a pad a tapir a door a moor an aid a raid
a wad an alias an ox an atlas a bus a madam a jag a saw a mass an anus a gnat a lab
a cadet an em a natural a tip a caress a pass a baronet a minimax a sari a fall a ballot
a knot a pot a rep a carrot a mart a part a tort a gut a poll a gateway a law a jay a sap
a zag a fat a hall a gamut a dab a can a tabu a day a batt a waterfall a patina a nut a
flow a lass a van a mow a nib a draw a regular a call a war a stay a gam a yap a cam
aray an ax a tag a wax a paw a cat a valley a drib a lion a saga a plat a catnip a pooh
arail a calamus a dairyman a bater a canal Panama

Example: Count the e’s in a string

/** = number of times ¢ occurs in s */
public static int countEm(char c String s) {
if (s.length() == 0) return 0;
// { s has at least 1 character }
if (s.charAt(0) !=c)
return countEm(c s.substring(1));

// { first character of s is ¢}
return 1 + countEm (c s.substring(1));

s

countEm(‘e’ “it is easy to see that this has many e’s”) = 4

countEm(‘e’ “Mississippi”) = O

9/14/15

