9/2/15

Announcements

o1 AO has been graded That pesky -ea flag!
o Everyone who submitted gets a grade of 1 (the max)

1 We're not checking submissions! We wanted you to learn how to
make sure that assert statements are executed.

0 We're pleased with how many people are already working on
A1, as evidenced by Piazza activity

o1 Please be sure to look at Piazza note @84 every day for
frequently asked questions and answers

o Groups: Forming a group of two? Do it well before you submit — at
CS/ENG RD 2]] O least one daylbefore. Buo'h m:mbers Imusl act: one z'wLi,tel;, fhle other
FALL 20 _l 5 accepts. Thereafter, only one member has to submit the files.

o A2: Practice with strings
o We will give you our test cases soon!

References to text and JavaSummary.pptx Homework
== ==

o A bit about testing and test cases

Class Obiject, superest class of them all. Read the text, Appendix A.1-A.3
Text: C.23 slide 30 2. Read the text, about the if-statement: A.38-A.40
Function toString() C.24 slide 31-33 3. Visit cour.se erbsite, click on Resources and then on Code
Style Guidelines. Study
Overriding a method C15-C16 slide 31-32 2. Format Conventions
Static components (methods and fields) B.27 slide 21, 45 4.5 About then-part and else-part of if-statement

a

m}

a

a

o

Java application: a program with a class that declares a
method with this signature:

public static void main(String[])

A bit about testing Class W (for Worker)

Test case: Set of input values, together with the expected output. /** Constructor: worker with last name n, SSN s, boss b (null if none).
Prec: nnot null, sin 0..999999999 with no leading zeros.*/

Develop test cases for a method from its specification --- even public W(String n, int s, W b)

before you write the method’s body.

- - /** = worker's last name */ W@af
/** = number of vowels in word w. public String getLname() @a
PreC(.)n(.iition: w contains at least. one letter and nothing but letters */ #% — Last 4 SN, digits */ Iname]
public int numberOfVowels(String w) { public String getSsn() ssn (123456789
Developing“test D /** = worker's boss (null if none) */ boss [nul |
) first, in " critique public W getBoss() W(...) getlname()
mode, can prevent 1S: tB tBoss(W.
How many vowels in each of these words? - N e vl /%% Set boss to b */ g? Sstn!) getBoss() setBoss(W)
creek dscUordan public void setBoss(W b) oString()
errors equals(Obiject) hashCode()

syzygy Contains other methods!

Class Obiject: the superest class of them all

Java: Every class that does not
extend another extends class
Obiject. That is,

We draw object like this

W@af
public class W {...}

toString()
equals(Object) hashCode()

public class W extends Object {:..} |name E
ssn [123456789
We often omit this partition to 255 lil

reduce clutter; we know that it W(...) getlname()
getSsn(), getBoss() setBoss(W)

is equivalent to

is always there.

A note on design

Don’t use extends just to get access to hidden
members!
A should extend B if and only if A *is a” B
An elephant is an animal, so Elephant extends Animal
A car is a vehicle, so Car extends Vehicle

An instance of any class is an object, so
AnyClass extends java.lang.Object

A PhDTester is not a PhD student!
The inheritance hierarchy should reflect modeling
semantics, not implementational shortcuts

What is “the name of” the object?

The name of the object below is
PhD@aal1bb24

It contains a pointer to the object —i.e. its address in memory, and
you can call it a pointer if you wish. But it contains more than that.

Variable e, declared as

PhD e¢;
contains not the object but the
name of the object (or a pointer
to the object).

e |PhD@aallbb24

PhD@aal1bb24

-
adi[null | ad2[null |
PhD advisees

Method toString

toString() in Object returns the name of the object: W@af

o[W@of |

Java Convention: Define toString() in

any class to return a representation of an W@af

object, giving info about the values in its
fields. toString() ...

New definitions of toString() override A4

the definition in Object.toString()

iname [“Obama” |
boss [il]

getSsn() ...

In appropriate places, the expression
¢ automatically does c.toString()

toString() ...

c.toString() calls this method

Method toString

toString() in Object returns the name of the object: W@af

public class W { c
W@af
/*% Return a representation of this object */ toString() ...
pubtllc Sir\l;g ;:)Str’l’ng(i { = E
return “Worker ” + Iname + “.” + = =
“Socsec: ...” + getSSn() + “.” + friims
(boss == null 2 “” : “Boss ” + boss.Iname + “.”); ssn 123456789
) boss [nol |
getSsn() ...
c.toString() calls this method toString() ...

Another example of toString()

/** An instance represents a point (X, y) in the plane */

publlf clas§ Point { . Point@fa8
private int x; // x-coordinate
private int y; // y-coordinate

/#% = repr. of this point in form “(x,y)” */
public String toString() {
return “(” + x + “,”

¥

+y + “ys

Function toString should give the values in the
fields in a format that makes sense for the class.

9/2/15

What about this

this keyword: this evaluates to the name of the object in

which it occurs
Makes it possible for an object to access its own name (or
pointer)

Example: Referencing a shadowed class field

public class Point {
public int x= 0;
public int y= 0;

public class Point {
public int x= 0;
public int y= 0;
//constructor //constructor
public Point(int x, int y) { public Point(int x, int y) {

X= X; this.x= x;
¥=Y; ® @ this.y= y;
¥ (=) ¥
}

}
Inside-out rule shows that

9/2/15

field x is inaccessible!

Intro to static components

/%% = “this object is ¢’ s boss”.
Pre: ¢ is not null. ¥/
public boolean isBoss(W ¢) {

return this == c.boss;
} x|W@b4 y |W@qf

Spec: return the value of W@b4 W@af
that true-false sentence.
True if this object is ¢’s 7
) Iname Iname
boss, false otherwise boss ’@l boss @l
keyword this evaluates isBoss(W c) { isBoss(W c) {

to the name of the object return)
in which it appears this == c.boss; }

x.isBoss(y) is false

y.isBoss(x) is true

Intro to static components

Body doesn't refer to any
field or method in the object.
Why put method in object?

X\W@b4| y |W@af

W@b4 W@af
Iname

boss boss [null]

/¥% ="bisc s boss”.
Pre: b and ¢ are not null. */
public boolean isBoss(W b, W,
return b == c.getBoss();

/*¥% = “this object is ¢" s boss”.

Pre: ¢ is not null. */
public boolean isBoss(W ¢) { el 21 | S0 35 |
return this == c.boss; isBoss(W) isBoss(W)
isBoss(W,W) isBoss(W, W)

}

Intro to static components
static: there is only one
5% = “bis ¢’ s boss”. copy of the method. It is
Pre: b and c a full. */ colfiecehioblech
public static boolean isBoss(W b, W ¢) {
return b == c.getBoss();
Box for W (objects, static components)
W@b4 W@af
Iname Iname

Preferred: boss boss [null|

}

Good example of static methods

java.lang.Math
http:/ /docs.oracle.com/javase /8 /docs/api/java/lang /Math.html

W.isBoss(x, y) ssn| 21 ssn| 35
isBoss(W) isBoss(W)
x|W@b4 y W@af isBoss(W,W)

Java application
Java application: bunch of classes with at
least one class that has this procedure:

public static void main(String[] args) {

Type String[]: array of
} elements of type String.

We will discuss later

Running the application effectively calls method main

Command line arguments can be entered with args

Use of static variables: Maintain info about created
objects

public class W {
private static int numObs; // number of W objects created

/** Constructor: */
public W(...) {

numObs= numObijs + 1;
} W@bd wW@12

To have numObs contain the

Iname “Ob” Iname | “Bid”
number of objects of class W :
that h t impl
L at have f)e.en created, simply numObs
increment it in constructors.
Box for W

Uses of static variables:
Implement the Singleton pattern

Only one Singleton can ever exist.
public class Singleton {

private static final Singleton instance= new Singleton();

private Singleton() {} // ... constructor

public static Singleton getlnstance() {
return INSTANCE;
}

// ... methods
}

Singleton@x3k3

Singleton
instance | Singleton@x3k3

Box for Singleton

Class java.awt.Color uses static variables

An instance of class Color describes a color in the RGB (Red-Green-
Blue) color space. The class contains about 20 static variables, each

of which is (i.e. contains a pointer to) a non-changeable Color object
for a given color:

public static Color black= ...
public static Color blue= ...;
public static Color cyan= ...;
public static Color darkGray= ...;
public static Color gray= ...;
public static Color green= ...;

i

9/2/15

