
9/2/15	

1	

CS/ENGRD 2110
FALL 2015
Lecture 4: The class hierarchy; static components
http://courses.cs.cornell.edu/cs2110

1

Announcements
2

¨  A0 has been graded
¤  Everyone who submitted gets a grade of 1 (the max)
¤  We're not checking submissions! We wanted you to learn how to

make sure that assert statements are executed.

¨  We're pleased with how many people are already working on
A1, as evidenced by Piazza activity
¤  Please be sure to look at Piazza note @84 every day for

frequently asked questions and answers
¤  Groups: Forming a group of two? Do it well before you submit – at

least one day before. Both members must act: one invites, the other
accepts. Thereafter, only one member has to submit the files.

¨  A2: Practice with strings
¤  We will give you our test cases soon!

That pesky -ea flag!

References to text and JavaSummary.pptx
3

¨  A bit about testing and test cases
¨  Class Object, superest class of them all.

 Text: C.23 slide 30

¨  Function toString() C.24 slide 31-33

¨  Overriding a method C15–C16 slide 31-32

¨  Static components (methods and fields) B.27 slide 21, 45
¨  Java application: a program with a class that declares a

method with this signature:

 public static void main(String[])

Homework
4

1.  Read the text, Appendix A.1–A.3
2.  Read the text, about the if-statement: A.38–A.40
3.  Visit course website, click on Resources and then on Code

Style Guidelines. Study
 2. Format Conventions
 4.5 About then-part and else-part of if-statement

 A bit about testing
5

Test case: Set of input values, together with the expected output.

Develop test cases for a method from its specification --- even
before you write the method’s body.

/** = number of vowels in word w.
Precondition: w contains at least one letter and nothing but letters */
public int numberOfVowels(String w) {
 …
}

Developing test cases
first, in “critique”
mode, can prevent

wasted work and
errors

How many vowels in each of these words?
 creek
 syzygy

Class W (for Worker)
6

/** Constructor: worker with last name n, SSN s, boss b (null if none).
 Prec: n not null, s in 0..999999999 with no leading zeros.*/
public W(String n, int s, W b)

/** = worker's last name */
public String getLname()

/** = last 4 SSN digits */
public String getSsn()

/** = worker's boss (null if none) */
public W getBoss()

/** Set boss to b */
public void setBoss(W b)

W@af
W lname “Obama”

ssn 123456789
boss null

W(…) getLname()
getSsn() getBoss() setBoss(W)

Contains other methods!

toString()
equals(Object) hashCode()

9/2/15	

2	

Class Object: the superest class of them all
7

Java: Every class that does not
extend another extends class
Object. That is,

 public class W {…}

is equivalent to

 public class W extends Object {…}

W@af

W lname “Obama”
ssn 123456789

boss null
W(…) getLname()
getSsn(), getBoss() setBoss(W)

Object toString()
equals(Object) hashCode()

We draw object like this

We often omit this partition to
reduce clutter; we know that it
is always there.

A note on design
8

¨  Don’t use extends just to get access to hidden
members!

¨  A should extend B if and only if A “is a” B
¤ An elephant is an animal, so Elephant extends Animal
¤ A car is a vehicle, so Car extends Vehicle
¤ An instance of any class is an object, so

AnyClass extends java.lang.Object
¤ A PhDTester is not a PhD student!

¨  The inheritance hierarchy should reflect modeling
semantics, not implementational shortcuts

What is “the name of” the object?
9

The name of the object below is

 PhD@aa11bb24

It contains a pointer to the object –i.e. its address in memory, and
you can call it a pointer if you wish. But it contains more than that.

“Mumsie”

nullad1 ad2

advisees

null

1

name

PhD@aa11bb24

PhD@aa11bb24e
PhD

Variable e, declared as
 PhD e;
contains not the object but the
name of the object (or a pointer
to the object).

PhD

Method toString
10

Object
W@af

lname “Obama”
ssn 123456789

boss null

W

getSsn() …

toString() …

toString() in Object returns the name of the object: W@af

Java Convention: Define toString() in
any class to return a representation of an
object, giving info about the values in its
fields.

New definitions of toString() override
the definition in Object.toString()

c W@af

toString() … c.toString() calls this method

In appropriate places, the expression
c automatically does c.toString()

Method toString
11

Object
W@af

lname “Obama”
ssn 123456789

boss null

W

getSsn() …

toString() …

toString() in Object returns the name of the object: W@af

public class W {

 …

 /** Return a representation of this object */
 public String toString() {
 return “Worker ” + lname + “.” +
 “ Soc sec: …” + getSSn() + “.” +
 (boss == null ? “” : “Boss ” + boss.lname + “.”);
 }

c W@af

toString() … c.toString() calls this method

Another example of toString()
12

/** An instance represents a point (x, y) in the plane */
public class Point {

private int x; // x-coordinate
private int y; // y-coordinate
…
/** = repr. of this point in form “(x, y)” */
public String toString() {

 return “(” + x + “, ” + y + “)”;
}

}

Point@fa8
Point

x 9 y 5

Function toString should give the values in the
fields in a format that makes sense for the class.

(9, 5)

9/2/15	

3	

What about this
13

¨  this keyword: this evaluates to the name of the object in
which it occurs

¨  Makes it possible for an object to access its own name (or
pointer)

¨  Example: Referencing a shadowed class field

 public class Point {
 public int x= 0;
 public int y= 0;

 //constructor
 public Point(int x, int y) {

 x= x;
 y= y;

 }
}

public class Point {
 public int x= 0;
 public int y= 0;

 //constructor
 public Point(int x, int y) {

 this.x= x;
 this.y= y;

 }
}

Inside-out rule shows that
field x is inaccessible!

Intro to static components
14

W@af
W

lname “Om”
boss null

isBoss(W c) {
…}

W@b4
W

lname “Jo”
boss W@af

isBoss(W c) {
 return
 this == c.boss; }

/** = “this object is c’s boss”.
 Pre: c is not null. */
public boolean isBoss(W c) {
 return this == c.boss;
}

keyword this evaluates
to the name of the object

in which it appears

x.isBoss(y) is false

y W@af

x W@b4

y.isBoss(x) is true

Spec: return the value of
that true-false sentence.
True if this object is c’s
boss, false otherwise

Intro to static components
15

W@af
W

lname “Om”

ssn 35

boss null

isBoss(W)

W@b4
W

lname “Jo”

ssn 21

boss W@af

isBoss(W)

/** = “this object is c’s boss”.
 Pre: c is not null. */
public boolean isBoss(W c) {
 return this == c.boss;
}

/** = “b is c’s boss”.
 Pre: b and c are not null. */
public boolean isBoss(W b, W c) {
 return b == c.getBoss();
}

isBoss(W,W) isBoss(W,W)

y W@af

x W@b4

Body doesn’t refer to any
field or method in the object.

Why put method in object?

Intro to static components
16

W@af
W

lname “Om”

ssn 35

boss null

isBoss(W)

W@b4
W

lname “Jo”

ssn 21

boss W@af

isBoss(W)

/** = “b is c’s boss”.
 Pre: b and c are not null. */
public static boolean isBoss(W b, W c) {
 return b == c.getBoss();
}

isBoss(W,W) y W@af

x W@b4

static: there is only one
copy of the method. It is
not in each object

Box for W (objects, static components)

x.isBoss(x, y)
y.isBoss(x, y)

Preferred:
W.isBoss(x, y)

Good example of static methods
17

¨  java.lang.Math
http://docs.oracle.com/javase/8/docs/api/java/lang/Math.html

Java application
18

Java application: bunch of classes with at
least one class that has this procedure:
 public static void main(String[] args) {
 …
 }

Type String[]: array of
elements of type String.
We will discuss later

Running the application effectively calls method main

Command line arguments can be entered with args

9/2/15	

4	

Use of static variables: Maintain info about created
objects

19

W@12

W

lname “Bid”

W@bd

W

“Ob” lname

numObs 2

Box for W

public class W {
 private static int numObs; // number of W objects created

}

To have numObs contain the
number of objects of class W
that have been created, simply
increment it in constructors.

/** Constructor: */
public W(…) {
 …
 numObs= numObjs + 1;
}

public class Singleton {
 private static final Singleton instance= new Singleton();

 private Singleton() { } // ... constructor

 public static Singleton getInstance() {
 return INSTANCE;
 }

 // ... methods
}

Uses of static variables:
 Implement the Singleton pattern

20

Singleton@x3k3

Singleton

instance

Box for Singleton

Only one Singleton can ever exist.

…

Singleton@x3k3

An instance of class Color describes a color in the RGB (Red-Green-
Blue) color space. The class contains about 20 static variables, each
of which is (i.e. contains a pointer to) a non-changeable Color object
for a given color:

public static Color black= …;
public static Color blue= …;
public static Color cyan= …;
public static Color darkGray= …;
public static Color gray= …;
public static Color green= …;
…

Class java.awt.Color uses static variables
21

