Concluding Lecture: History, Correctness Issues, Summary

Final review session: Fri, 9 May, 1:00–3:00, Phillips 101.
Final: 7:00–9:30PM, Monday, 12 May, Barton Hall

We hope to get you tentative course grades by Wednesday noon, but it may be later. You then visit the CMS and do the assignment to tell us whether you accept the grade or will take the final. There will be a message on the Piazza and the CMS about this when the tentative course grades are available.

Momentous changes since the 1940s—or since even the use of punch cards and attempt at automation …

Punch cards

Jacquard loom

Loom still used in China

Mechanical loom invented by Joseph Marie Jacquard in 1801. Used the holes punched in pasteboard punch cards to control the weaving of patterns in fabric. Punch card corresponds to one row of the design. Based on earlier invention by French mechanic Falcon in 1728.

Charles Babbage designed a “difference engine” in 1822

Compute mathematical tables for log, sin, cos, other trigonometric functions.

No electricity

The mathematicians doing the calculations were called computers

Charles Babbage planned to use cards to store programs in his Analytical engine. (First designs of real computers, middle 1800s until his death in 1871.)

First programmer was Ada Lovelace, daughter of poet Lord Byron.

Privately schooled in math. One tutor was Augustus De Morgan.

The Right Honourable Augusta Ada, Countess of Lovelace.
Herman Hollerith.
His tabulating machines used in compiling the 1890 Census.
Hollerith's patents were acquired by the Computing-Tabulating-Recording Co. Later became IBM.

The operator places each card in the reader, pulls down a lever, and removes the card after each punched hole is counted.

Hollerith 1890 Census Tabulator

1935-36. Konrad Zuse - Z1 Computer
1944. Howard Aiken & Grace Hopper Harvard Mark I Computer
1946. John Presper Eckert & John W. Mauchly ENIAC 1 Computer
1947-48 The Transistor, at Bell-labs.
1953. IBM, the IBM 701.

Programmed in Fortran and IBM 7090 assembly language

```fortran
if (SEX == 'M') MALES = MALES + 1;
else FEMALES = FEMALES + 1;
```

CLI SEX,M Male?
BNO IS_FEM If not, branch around
L 7,MALES Load MALES into register 7;
LA 7,(7) add 1;
ST 7,MALES and store the result
B GO_ON Finished with this portion
IS_FEM L 7,FEMALES If not male, load FEMALES into register 7;
LA 7,(7) add 1;
ST 7,FEMALES and store
GO_ON EQU *

1960: Big Year for Programming Languages

COBOL (Common Business-Oriented Language). Became most widely used language for business, data processing.

ALGOL (Algorithmic Language). Developed by an international team over a 3-year period. McCarthy was on it, John Backus was on it (developed Fortran in mid 1950’s). Gries’s soon-to-be PhD supervisor, Fritz Bauer of Munich, led the team.
1959. Took his only computer course. Senior, Queens College.

John Backus, FORTRAN, mid 1950’s: 30 people years
This compiler: 6–people-years
Today, CS compiler writing course: 2 students, one semester
1963-66 Dr. rer. nat. in Math in Munich Institute of Technology
1966-69 Asst. Professor, Stanford CS
1969- Cornell!

About 1973. BIG STEP FORWARD
1. Write program on punch cards.
2. Wait in line (20 min) to put cards in card reader in Upson basement
3. Output comes back in 5 minutes

About 1979. Teraks
Prof. Tim Teitelbaum sees opportunity. He and grad student Tom Reps develop "Cornell Program Synthesizer". Year later, Cornell uses Teraks in its prog course.

November 1981, Terak with 56K RAM, one floppy drive: $8,935.
Want 10MB hard drive? $8,000 more

The NATO Software Engineering Conferences
homepages.cs.ncl.ac.uk/brian.randell/NATO/
7-11 Oct 1968, Garmisch, Germany
27-31 Oct 1969, Rome, Italy
Download Proceedings, which have transcripts of discussions. See photographs.
Software crisis:
Academic and industrial people. Admitted for first time that they did not know how to develop software efficiently and effectively.
Next 10-15 years: intense period of research on software engineering, language design, proving programs correct, etc.

During 1970s, 1980s, intense research on
How to prove programs correct,
How to make it practical,
Methodology for developing algorithms

The way we understand recursive methods is based on that methodology.
Our understanding of and development of loops is based on that methodology.

Throughout, we try to give you thought habits and strategies to help you solve programming problems effectively, e.g.
Write good method specs.
Keep methods short.
Use method calls to eliminate nested loops.
Put local variable declarations near first use.

Simplicity is key:
Learn not only to simplify, learn not to complify.
Separate concerns, and focus on one at a time.

Develop and test incrementally.

Correctness of programs, the teaching of programming

simplicity
elegance
perfection
intellectual honesty

Edsger W. Dijkstra
Sir Tony Hoare

Dijkstra: The competent programmer is fully aware of the limited size of his own skill, so he approaches the programming task in full humility, and among other things, he avoids clever tricks like the plague.

Hoare: Two ways to write a program:
(1) Make it so simple that there are obviously no errors.
(2) Make it so complicated that there are no obvious errors.
Axiomatic Basis for Computer Programming.
Tony Hoare, 1969

Provide a definition of programming language statements not in terms of how they are executed but in terms of proving them correct.

\{precondition \(P \)\}
Statement \(S \)
\{Postcondition \(Q \)\}

Meaning: If \(P \) is true, then execution of \(S \) is guaranteed to terminate and with \(Q \) true.

Assignment statement \(x := e \):

Definition of the assignment statement:

\(\{P[x := e]\} \)
\(x := e; \)
\(\{P\} \)

\(\{x+1 >= 0\} \)
\(x := x + 1; \)
\(\{x >= 0\} \)

\(\{2*x = 82\} \)
\(x := 2*x; \)
\(\{x = 82\} \)

Definition of notation:

\(P[x:= e] \) (read \(P \) with \(x \) replaced by \(e \)) stands for a copy of expression \(P \) in which each occurrence of \(x \) is replaced by \(e \).

Example:

\((x >= 0)[x:= x+1] = x+1 >= 0 \)

Definition of the assignment statement:

\(\{P[x := e]\} \)
\(x := e; \)
\(\{P\} \)

- \(x = x/6 \)
- \(2.0xy + z = (2.0xy + z)/6 \)

If statement defined as an “inference rule”:

Definition of if statement:

If
Then
\(\{P \land B\} \)
\(ST \) \(\{Q\} \)
Else
\(\{P \land \neg B\} \)
\(SF \) \(\{Q\} \)

The then-part, \(ST \), must end with \(Q \) true.
The else-part, \(SF \), must end with \(Q \) true.

Hoare’s contribution 1969:

Axiomatic basis: Definition of a language in terms of how to prove a program correct.

But it is difficult to prove a program correct after the fact.

How do we develop a program and its proof hand-in-hand?

Dijkstra showed us how to do that in 1975.

His definition, called “weakest preconditions” is defined in such a way that it allows us to “calculate” a program and its proof of correctness hand-in-hand, with the proof idea leading the way.

A research monograph

Undergraduate text.

How to prove concurrent programs correct.

Use the principle of non-interference

<table>
<thead>
<tr>
<th>Thread T1</th>
<th>Thread T2</th>
</tr>
</thead>
<tbody>
<tr>
<td>(P0)</td>
<td>(Q0)</td>
</tr>
<tr>
<td>(S1;)</td>
<td>(Z1;)</td>
</tr>
<tr>
<td>(P1)</td>
<td>(Q1)</td>
</tr>
<tr>
<td>(Z2;)</td>
<td>(S2;)</td>
</tr>
<tr>
<td>(P2)</td>
<td>(Z2;)</td>
</tr>
<tr>
<td>(\ldots)</td>
<td>(\ldots)</td>
</tr>
<tr>
<td>(S_n)</td>
<td>(Z_m)</td>
</tr>
<tr>
<td>(P_n)</td>
<td>(Q_m)</td>
</tr>
</tbody>
</table>

We have a proof that T1 works in isolation and a proof that T2 works in isolation.

But what happens when T1 and T2 execute simultaneously, operating on the same variables?
How to prove concurrent programs correct.

Prove that execution of T1 does not interfere with the proof of T2, and vice versa.
Basic notion: Execution of Si does not falsify an assertion in T2:
e.g. \((P_i \land Q_1) S_2 (Z_2) \)

Interference freedom
A lot of progress since then! But still, there are a lot of hard issues to solve in proving concurrent programs correct in a practical manner.

Turn what previously seemed to be an exponential problem, looking at all executions, into a problem of size \(n \times m \).