A lecture with two distinct parts

- Part I: Finishing our discussion of graphs
 - Short review of DFS and BFS.
 - Spanning trees
 - Definitions, algorithms (Prim’s, Kruskal’s)
 - Travelling salesman problem

Undirected Trees

- An undirected graph is a **tree** if there is exactly one simple path between any pair of vertices

Facts About Trees

- \(|E| = |V| - 1\)
- connected
- no cycles

In fact, any two of these properties imply the third, and imply that the graph is a tree

Spanning Trees

A **spanning tree** of a connected undirected graph \((V,E)\) is a subgraph \((V,E')\) that is a tree

- Same set of vertices \(V\)
- \(E' \subseteq E\)
- \((V,E')\) is a tree
Finding a Spanning Tree

A subtractive method

- Start with the whole graph – it is connected
- If there is a cycle, pick an edge on the cycle, throw it out – the graph is still connected (why?)
- Repeat until no more cycles

An additive method

- Start with no edges – there are no cycles
- If more than one connected component, insert an edge between them – still no cycles (why?)
- Repeat until only one component
Finding a Spanning Tree

An additive method

• Start with no edges – there are no cycles
• If more than one connected component, insert an edge between them – still no cycles (why?)
• Repeat until only one component

Finding a Spanning Tree

An additive method

• Start with no edges – there are no cycles
• If more than one connected component, insert an edge between them – still no cycles (why?)
• Repeat until only one component

Finding a Spanning Tree

An additive method

• Start with no edges – there are no cycles
• If more than one connected component, insert an edge between them – still no cycles (why?)
• Repeat until only one component

Finding a Spanning Tree

An additive method

• Start with no edges – there are no cycles
• If more than one connected component, insert an edge between them – still no cycles (why?)
• Repeat until only one component

Minimum Spanning Trees

• Suppose edges are weighted, and we want a spanning tree of minimum cost (sum of edge weights)
• Some graphs have exactly one minimum spanning tree. Others have multiple trees with the same cost, any of which is a minimum spanning tree

Minimum Spanning Trees

• Suppose edges are weighted, and we want a spanning tree of minimum cost (sum of edge weights)
• Useful in network routing & other applications
• For example, to stream a video

3 Greedy Algorithms

A. Find a max weight edge – if it is on a cycle, throw it out, otherwise keep it
3 Greedy Algorithms

A. Find a max weight edge – if it is on a cycle, throw it out, otherwise keep it
3 Greedy Algorithms

A. Find a max weight edge – if it is on a cycle, throw it out, otherwise keep it

B. Find a min weight edge – if it forms a cycle with edges already taken, throw it out, otherwise keep it

Kruskal’s algorithm
3 Greedy Algorithms

B. Find a min weight edge – if it forms a cycle with edges already taken, throw it out, otherwise keep it

Kruskal's algorithm

3 Greedy Algorithms

C. Start with any vertex, add min weight edge extending that connected component that does not form a cycle

Prim's algorithm (reminiscent of Dijkstra's algorithm)
3 Greedy Algorithms

C. Start with any vertex, add min weight edge extending that connected component that does not form a cycle

Prim's algorithm
(reminiscent of Dijkstra's algorithm)

Prim's Algorithm

```c
prim(s) {
D[s] = 0; mark s; // start vertex
while (some vertices are unmarked) {
    v = unmarked vertex with smallest D;
    mark v;
    for (each w adj to v) {
        D[w] = min(D[w], c(v,w));
    }
}
```

• $O(n^2)$ for adj matrix
 – While-loop is executed n times
 – For-loop takes $O(n)$ time

3 Greedy Algorithms

• When edge weights are all distinct, or if there is exactly one minimum spanning tree, the 3 algorithms all find the identical tree

Greedy Algorithms

- These are examples of Greedy Algorithms
- The Greedy Strategy is an algorithm design technique
 - Like Divide & Conquer
 - Greedy algorithms are used to solve optimization problems
 - The goal is to find the best solution
- Works when the problem has the greedy-choice property
 - A global optimum can be reached by making locally optimum choices
- Example: the Change Making Problem: Given an amount of money, find the smallest number of coins to make that amount
- Solution: Use a Greedy Algorithm
 - Give as many large coins as you can
 - This greedy strategy produces the optimum number of coins for the US coin system
- Different money system —greedy strategy may fail
 - Example: old UK system
Similar Code Structures

while (some vertices are unmarked) {
 v = best of unmarked vertices;
 mark v;
 for (each w adj to v)
 update w;
}

- Breadth-first-search (bfs)
 - best: next in queue
 - update: \(D[w] = D[v] + 1 \)
- Dijkstra’s algorithm
 - best: next in priority queue
 - update: \(D[w] = \min(D[w], D[v] + c(v,w)) \)
- Prim’s algorithm
 - best: next in priority queue
 - update: \(D[w] = \min(D[w], c(v,w)) \)

here \(c(v,w) \) is the \(v \rightarrow w \) edge weight

Traveling Salesman Problem

- Given a list of cities and the distances between each pair, what is the shortest route that visits each city exactly once and returns to the origin city?
- Basically what we want the butterfly to do in A6! But we don’t mind if the butterfly revisits a city (Tile), or doesn’t use the very shortest possible path.
- The true TSP is very hard (NP complete)... for this we want the perfect answer in all cases, and can’t revisit.
- Most TSP algorithms start with a spanning tree, then “evolve” it into a TSP solution. Wikipedia has a lot of information about packages you can download…

1. Basic algorithm
2. Random
3. Branch and bound