Readings and Homework

Read Chapter 26 to learn about heaps.

Salespeople often make matrices that show all the great features of their product that the competitor’s product lacks. Try this for a heap versus a BST. First, try and sell someone on a BST. List some desirable properties of a BST that a heap lacks. Now be the heap salesperson. List some good things about heaps that a BST lacks. Can you think of situations where you would favor one over the other?

With ZipUltra heaps, you’ve got it made in the shade my friend!

The Bag Interface

A Bag:

```java
interface Bag<E> {
    void insert(E obj);
    E extract(); // extract some element
    boolean isEmpty();
}
```

Like a Set except that a value can be in it more than once. Example: a bag of coins

Refinements of Bag: Stack, Queue, PriorityQueue

Stacks and Queues as Lists

- Stack (LIFO) implemented as list
 - `insert()` from front of list
 - `extract()` from front of list
- Queue (FIFO) implemented as list
 - `insert()` on back of list, `extract()` from front of list
- All Bag operations are O(1)

Priority Queue

- A Bag in which data items are Comparable
- Lesser elements (as determined by `compareTo()`) have higher priority
- `extract()` returns the element with the highest priority = least in the `compareTo()` ordering
- break ties arbitrarily

Priority Queue Examples

- Scheduling jobs to run on a computer
 - default priority = arrival time
 - priority can be changed by operator
- Scheduling events to be processed by an event handler
 - priority = time of occurrence
- Airline check-in
 - first class, business class, coach
 - FIFO within each class
java.util.PriorityQueue\textltlt E\textgt

- \texttt{add(E e)} \ldots // insert an element (insert)
- \texttt{clear()} \ldots // remove all elements
- \texttt{peek()} \ldots // return min element without removing
 // (null if empty)
- \texttt{poll()} \ldots // remove min element (extract)
 // (null if empty)
- \texttt{size()} \ldots

Priority Queues as Lists

- Maintain as unordered list
 - \texttt{insert()} put new element at front – \(O(1)\)
 - \texttt{extract()} must search the list – \(O(n)\)
- Maintain as ordered list
 - \texttt{insert()} must search the list – \(O(n)\)
 - \texttt{extract()} get element at front – \(O(1)\)
- In either case, \(O(n^2)\) to process \(n\) elements

Can we do better?

Important Special Case

- Fixed number of priority levels 0, \ldots, \(p-1\)
- FIFO within each level
- Example: airline check-in
- \texttt{insert()} – insert in appropriate queue – \(O(1)\)
- \texttt{extract()} – must find a nonempty queue – \(O(p)\)

Heaps

- A heap is a concrete data structure that can be used
to implement priority queues
- Gives better complexity than either ordered or
unordered list implementation:
 - \texttt{insert()} : \(O(\log n)\)
 - \texttt{extract()} : \(O(\log n)\)
- \(O(n \log n)\) to process \(n\) elements
- Do not confuse with heap memory, where the Java virtual machine allocates space for objects – different usage of the word heap

Heaps

- Binary tree with data at each node
- Satisfies the Heap Order Invariant:
 - The least (highest priority) element of any subtree is found at the root of that subtree
 - Size of the heap is “fixed” at \(n\). (But can usually double \(n\) if heap fills up)

Smallest element in any subtree

- is always found at the root of that subtree

Note: 19, 20 < 35; Smaller elements can be deeper in the tree!
Examples of Heaps

- Ages of people in family tree
 - parent is always older than children, but you can have an uncle who is younger than you
- Salaries of employees of a company
 - bosses generally make more than subordinates, but a VP in one subdivision may make less than a Project Supervisor in a different subdivision

Balanced Heaps

These add two restrictions:

1. Any node of depth $< d - 1$ has exactly 2 children, where d is the height of the tree
 - implies that any two maximal paths (path from a root to a leaf) are of length d or $d - 1$, and the tree has at least 2^d nodes
 - All maximal paths of length d are to the left of those of length $d - 1$

Example of a Balanced Heap

Store in an ArrayList or Vector

- Elements of the heap are stored in the array in order, going across each level from left to right, top to bottom
- The children of the node at array index n are at indices $2n + 1$ and $2n + 2$
- The parent of node n is node $(n - 1)/2$
insert()

- Put the new element at the end of the array
- If this violates heap order because it is smaller than its parent, swap it with its parent
- Continue swapping it up until it finds its rightful place
- The heap invariant is maintained!

```
4/7/14
```

```
insert()
```

```
insert()
```

```
insert()
```

```
insert()
```
- Time is $O(\log n)$, since the tree is balanced
 - Size of tree is exponential as a function of depth
 - Depth of tree is logarithmic as a function of size
An instance of a priority queue
class PriorityQueue\<E> extends java.util.Vector\<E> {

/** Insert e into the priority queue */
public void insert(E e) {
 super.add(e); // add to end of array
 bubbleUp(size() - 1); // given on next slide
}
}

Insert

```java
public void insert(E e) {
    super.add(e); // add to end of array
    bubbleUp(size() - 1); // given on next slide
}
```

Extract

- Remove the least element – it is at the root
- This leaves a hole at the root – fill it in with the last element of the array
- If this violates heap order because the root element is too big, swap it down with the smaller of its children
- Continue swapping it down until it finds its rightful place
- The heap invariant is maintained!
Time is $O(\log n)$, since the tree is balanced.
** Remove and return the smallest element
 return null if list is empty */
public E extract() {
 if (size() == 0) return null;
 E temp = get(0); // smallest value is at root
 set(0, get(size() – 1)); // move last element to the root
 setSize(size() - 1); // reduce size by 1
 bubbleDown(0);
 return temp;
}

** Bubble the root down to its heap position.
Pre: tree is a heap except: root may be > than a child */
private void bubbleDown() {
 int k = 0;
 // Set c to smaller of k’s children
 int c = 2*k + 2; // k’s right child
 if (c > size()-1 || get(c-1).compareTo(get(c)) < 0) c = c-1;
 // also, k’s smallest child is element c
 while (c < size() && get(k).compareTo(get(c)) > 0) {
 Swap elements at k and c;
 k = c;
 c = 2*k + 2; // k’s right child
 if (c > size()-1 || get(c-1).compareTo(get(c)) < 0) c = c-1;
 }
}

HeapSort
Given a Comparable[] array of length n,
• Put all n elements into a heap – O(n log n)
• Repeatedly get the min – O(n log n)

public static void heapSort(Comparable[] b) {
 PriorityQueue<Comparable> pq = new PriorityQueue<Comparable>(b);
 for (int i = 0; i < b.length; i++) {
 b[i] = pq.extract();
 }
}

PQ Application: Simulation
Example: Probabilistic model of bank-customer arrival times and transaction times, how many tellers are needed?
• Assume we have a way to generate random inter-arrival times
• Assume we have a way to generate transaction times
• Can simulate the bank to get some idea of how long customers must wait

One can do the two stages in the array itself, in place, so algorithm takes O(1) space.

Time-Driven Simulation
• Check at each tick to see if any event occurs

Event-Driven Simulation
• Advance clock to next event, skipping intervening ticks
• This uses a PQ!