TREES
Readings and Homework

- Textbook, Chapter 23, 24

- Homework: A thought problem (draw pictures!)
 - Suppose you use trees to represent student schedules. For each student there would be a general tree with a root node containing student name and ID. The inner nodes in the tree represent courses, and the leaves represent the times/places where each course meets. Given two such trees, how could you determine whether and where the two students might run into one-another?
Tree Overview

Tree: recursive data structure (similar to list)

- Each node may have zero or more successors (children)
- Each node has exactly one predecessor (parent) except the root, which has none
- All nodes are reachable from root

Binary tree: tree in which each node can have at most two children: a left child and a right child
Binary Trees were in A1!

You have seen a binary tree in A1.

A Bee object has a mom and pop. There is an ancestral tree!

```
  bee
 /   \
/     \n/       \
\       /\nmom     pop
/   \
/     \n/       \
/         \
/           \
/             \
mom pop mom
```
Tree Terminology

M: root of this tree
G: root of the *left subtree* of *M*
B, H, J, N, S: leaves
N: left child of *P*; *S*: right child
P: parent of *N*
M and *G*: *ancestors* of *D*
P, N, S: *descendents* of *W*
J is at *depth* 2 (i.e. length of path from root = no. of edges)
W is at *height* 2 (i.e. length of longest path to a leaf)
A collection of several trees is called a ...?
class TreeNode<T> {
 private T datum;
 private TreeNode<T> left, right;

 /** Constructor: one node tree with datum x */
 public TreeNode (T x) { datum= x; }

 /** Constr: Tree with root value x, left tree lft, right tree rgt */
 public TreeNode (T x, TreeNode<T> lft, TreeNode<T> rgt) {
 datum= x; left= lft; right= rgt;
 }
}

more methods: getDatum, setDatum, getLeft, setLeft, etc.
Binary versus general tree

In a binary tree each node has exactly two pointers: to the left subtree and to the right subtree

- Of course one or both could be null

In a general tree, a node can have any number of child nodes

- Very useful in some situations ...
- ... one of which will be our assignments!
Class for General Tree nodes

```java
class GTreeNode {
    1. private Object datum;
    2. private GTreeCell left;
    3. private GTreeCell sibling;
    4. appropriate getters/setters
}
```

- Parent node points directly only to its leftmost child
- Leftmost child has pointer to next sibling, which points to next sibling, etc.
Applications of Trees

- Most languages (natural and computer) have a recursive, hierarchical structure.
- This structure is *implicit* in ordinary textual representation.
- Recursive structure can be made *explicit* by representing sentences in the language as trees: Abstract Syntax Trees (ASTs).
- ASTs are easier to optimize, generate code from, etc., than textual representation.
- A parser converts textual representations to AST.
Example

Expression grammar:
- $E \rightarrow \text{integer}$
- $E \rightarrow (E + E)$

In textual representation
- Parentheses show hierarchical structure

In tree representation
- Hierarchy is explicit in the structure of the tree
Recursion on Trees

Recursive methods can be written to operate on trees in an obvious way

Base case
- empty tree
- leaf node

Recursive case
- solve problem on left and right subtrees
- put solutions together to get solution for full tree
/** Return true iff x is the datum in a node of tree t */
public static boolean treeSearch(Object x, TreeNode t) {
 if (t == null) return false;
 if (t.datum.equals(x)) return true;
 return treeSearch(x, t.left) || treeSearch(x, t.right);
}

• Analog of linear search in lists: given tree and an object, find out if object is stored in tree
• Easy to write recursively, harder to write iteratively
Searching in a Binary Tree

/** Return true iff x is the datum in a node of tree t*/
public static boolean treeSearch(Object x, TreeNode t) {
 if (t == null) return false;
 if (t.datum.equals(x)) return true;
 return treeSearch(x, t.left) || treeSearch(x, t.right);
}

Important point about t. We can think of it either as
(1) One node of the tree OR
(2) The subtree that is rooted at t
Binary Search Tree (BST)

If the tree data are ordered: in every subtree,
 All left descendents of node come before node
 All right descendents of node come after node
Search is MUCH faster

```java
/** Return true iff x if the datum in a node of tree t.  
   Precondition: node is a BST */
public static boolean treeSearch (Object x, TreeNode t) {
    if (t == null) return false;
    if (t.datum.equals(x)) return true;
    if (t.datum.compareTo(x) > 0)
        return treeSearch(x, t.left);
    else return treeSearch(x, t.right);
}
```
Building a BST

- To insert a new item
 - Pretend to look for the item
 - Put the new node in the place where you fall off the tree
- This can be done using either recursion or iteration
- Example
 - Tree uses alphabetical order
 - Months appear for insertion in calendar order
A BST makes searches very fast, unless...
- Nodes are inserted in alphabetical order
- In this case, we're basically building a linked list (with some extra wasted space for the left fields that aren't being used)

BST works great if data arrives in random order
Because of ordering rules for a BST, it’s easy to print the items in alphabetical order

- Recursively print left subtree
- Print the node
- Recursively print right subtree

```java
/** Print the BST in alpha. order. */
public void show () {
    show(root);
    System.out.println();
}

/** Print BST t in alpha order */
private static void show(TreeNode t) {
    if (t== null) return;
    show(t.lchild);
    System.out.print(t.datum);
    show(t.rchild);
}
```
“Walking” over whole tree is a tree traversal

Done often enough that there are standard names

Previous example: inorder traversal
- Process left subtree
- Process node
- Process right subtree

Note: Can do other processing besides printing

Other standard kinds of traversals

- Preorder traversal
 - Process node
 - Process left subtree
 - Process right subtree

- Postorder traversal
 - Process left subtree
 - Process right subtree
 - Process node

- Level-order traversal
 - Not recursive uses a queue
Some Useful Methods

/** Return true iff node t is a leaf */
public static boolean isLeaf(TreeNode t) {
 return t != null && t.left == null && t.right == null;
}

/** Return height of node t using postorder traversal */
public static int height(TreeNode t) {
 if (t == null) return -1; // empty tree
 if (isLeaf(t)) return 0;
 return 1 + Math.max(height(t.left), height(t.right));
}

/** Return number of nodes in t using postorder traversal */
public static int nNodes(TreeNode t) {
 if (t == null) return 0;
 return 1 + nNodes(t.left) + nNodes(t.right);
Useful Facts about Binary Trees

Max number of nodes at depth d: 2^d

If height of tree is h
- min number of nodes in tree: $h + 1$
- Max number of nodes in tree:
 $$2^0 + \ldots + 2^h = 2^{h+1} - 1$$

Complete binary tree
- All levels of tree down to a certain depth are completely filled
Tree with Parent Pointers

- In some applications, it is useful to have trees in which nodes can reference their parents
- Analog of doubly-linked lists
Things to Think About

What if we want to delete data from a BST?

A BST works great as long as it’s balanced

How can we keep it balanced? This turns out to be hard enough to motivate us to create other kinds of trees
• Given a string s, a suffix tree for s is a tree such that

 • each edge has a unique label, which is a nonnull substring of s
 • any two edges out of the same node have labels beginning with different characters
 • the labels along any path from the root to a leaf concatenate together to give a suffix of s
 • all suffixes are represented by some path
 • the leaf of the path is labeled with the index of the first character of the suffix in s

• Suffix trees can be constructed in linear time
Suffix Trees

```
abracadabra$
```

```
abra
```

```
dabra$
```

```
cadabra$
```

```
a
```

```
dabra$
```

```
cadabra$
```

```
bra
```

```
ra
```

```
cadabra$
```

```
$ 
```

```
$ 
```

```
$ 
```

```
$ 
```

```
$ 
```
Suffix Trees

- Useful in string matching algorithms (e.g., longest common substring of 2 strings)
- Most algorithms linear time
- Used in genomics (human genome is ~4GB)
Decision Trees

- **Classification:**
 - Attributes (e.g. is CC used more than 200 miles from home?)
 - Values (e.g. yes/no)
 - Follow branch of tree based on value of attribute.
 - Leaves provide decision.

- **Example:**
 - Should credit card transaction be denied?

```
Remote Use?
yes
Freq Trav?
  yes
  yes
  no
  no
Hotel?
  yes
  yes
  no
> $10,000?
  yes
  yes
  no
```
Huffman Trees

Fixed length encoding
197*2 + 63*2 + 40*2 + 26*2 = 652

Huffman encoding
197*1 + 63*2 + 40*3 + 26*3 = 521
Huffman Compression of “Ulysses”

<table>
<thead>
<tr>
<th>Character</th>
<th>Frequency</th>
<th>Code</th>
<th>Length</th>
</tr>
</thead>
<tbody>
<tr>
<td>' '</td>
<td>242125</td>
<td>00100000</td>
<td>3</td>
</tr>
<tr>
<td>'e'</td>
<td>139496</td>
<td>01100101</td>
<td>3</td>
</tr>
<tr>
<td>'t'</td>
<td>95660</td>
<td>01110100</td>
<td>4</td>
</tr>
<tr>
<td>'a'</td>
<td>89651</td>
<td>01100001</td>
<td>4</td>
</tr>
<tr>
<td>'o'</td>
<td>88884</td>
<td>01101111</td>
<td>4</td>
</tr>
<tr>
<td>'n'</td>
<td>78465</td>
<td>01101110</td>
<td>4</td>
</tr>
<tr>
<td>'i'</td>
<td>76505</td>
<td>01101001</td>
<td>4</td>
</tr>
<tr>
<td>'s'</td>
<td>73186</td>
<td>01110011</td>
<td>4</td>
</tr>
<tr>
<td>'h'</td>
<td>68625</td>
<td>01101000</td>
<td>5</td>
</tr>
<tr>
<td>'r'</td>
<td>68320</td>
<td>01110010</td>
<td>5</td>
</tr>
<tr>
<td>'l'</td>
<td>52657</td>
<td>01101100</td>
<td>5</td>
</tr>
<tr>
<td>'u'</td>
<td>32942</td>
<td>01110101</td>
<td>6</td>
</tr>
<tr>
<td>'g'</td>
<td>26201</td>
<td>01100111</td>
<td>6</td>
</tr>
<tr>
<td>'f'</td>
<td>25248</td>
<td>01100110</td>
<td>6</td>
</tr>
<tr>
<td>'.'</td>
<td>21361</td>
<td>00101110</td>
<td>6</td>
</tr>
<tr>
<td>'p'</td>
<td>20661</td>
<td>01110000</td>
<td>6</td>
</tr>
</tbody>
</table>
Huffman Compression of “Ulysses”

...

- '7' 68 00110111 15 1110101010011111
- '/' 58 00101111 15 1110101010011110
- 'X' 19 01011000 16 01100000001000111
- '&', 3 00100110 18 011000000010001010
- '%' 3 00100101 19 0110000000100010111
- '+' 2 00101011 19 0110000000100010110

original size 11904320
compressed size 6822151
42.7% compression
BSP Trees

- BSP = Binary Space Partition (not related to BST!)
- Used to render 3D images composed of polygons
- Each node n has one polygon p as data
- Left subtree of n contains all polygons on one side of p
- Right subtree of n contains all polygons on the other side of p
- Order of traversal determines occlusion (hiding)!
Tree Summary

- A tree is a recursive data structure
 - Each cell has 0 or more successors (*children*)
 - Each cell except the root has at exactly one predecessor (*parent*)
 - All cells are reachable from the root
 - A cell with no children is called a *leaf*

- Special case: *binary tree*
 - Binary tree cells have a left and a right child
 - Either or both children can be null

- Trees are useful for exposing the recursive structure of natural language and computer programs