PAGE
1
A real expression parser. By David Gries

A COMPILER FOR ARITHMETIC EXPRESSIONS

Class ExpressionCompiler contains code that does the following: Repeatedly, the user types an expression on the keyboard, hits return, and “machine language code” is produce for it. Here are two examples:
Input: 5 + 3

Output:
PUSH 5

PUSH 3

PLUS

Input: -3 * (5 - 2)
Output:
PUSH 3

NEG (NEG is used for a unary negation)

PUSH 5

PUSH 2

MINUS (MULT is used for binary minus)

MULT

The output is for a “stack machine”.:

PUSH 5 means push the value 5 onto the stack.

PLUS means pop the two top stack values off the stack, add them together, and push the result onto the stack.

NEG means pop the top value off the stack, negate it, and push the result onto the stack

POSTFIX NOTATION

The code produced is actually the “postfix” for of the expression in disguise. In infix notation, each binary operator appears between its operands and each unary operator appears before its operand. In postfix notation, each operator appears after its operands. Below are examples. They illustrate that in postfix notation, parentheses are not needed.

infix

postfix

- 3

3 neg

3 + 5

3 5 +

- 3 * (5 -7)

3 neg 5 7 - *

(((5+2))) * (6 +1)
5 2 + 6 1 + *

A GRAMMAR FOR ARITHMETIC EXPRESSIONS

Below is a grammar for arithmetic expressions that gives precedence to * and / over + and -. It consist of three rules or productions, as they are often called. Underneath, we give the English for it. Exp stands for Expression.

<Exp> ::= <Term> {<+ or -> <Term>}
An <exp> may be composed of a <Term> followed by 0 or more occurrences of <+ or → <Term>. Here are examples of <Exp>s:

<Term>

<Term> + <Term>

<Term> - <Term>

<Term> + <Term> + <Term> - <Term> - <Term> - <Term>

<Term> ::= < Factor > {<* or /> <Factor>}
An <Term> may be composed of a < Factor > followed by 0 or more occurrences of <* or /> < Factor>:

<Factor> ::= integer | - <Factor> | (<Expr>)
A <Factor> may be composed of an integer OR - <Factor> OR (<Exp>)

The second possibility is a negation. This case is an example of recursion: <Factor> is defined in terms of <Factor>

 The third possibility is an <Exp> in parentheses. This case is called mutual recursion: <Exp> is defined in terms of <Term>, <Term> is defined in terms of <Factor>, and <Factor> is defined in terms of <Exp>!

DRAW SOME SYNTAX TREES
It would be best for you to draw syntax trees for the following six expressions. The last is most illuminating. The only tree you can draw indicates that multiplication has precedence over addition.

2

2 + 3

2 * 3

(2 + 3)

(2 + 3) * 4

2 + 3 * 4

THE SCANNER

In his lecture on grammars and parsing, Ken Birman gave a grammar that went “farther down”, for example, he gave a rule for forming integers.

In a real compiler, a code called the SCANNER takes care of low-level stuff , processing the input character by character, throwing away whietspace (space character, tabs, new-lines, etc.), building “tokens” for integers like 3542 and other symbols like “==”, “!=”, keywords like “new” and “class”, and identifiers.

For example, for the string “public class C { int c= 555 == 4; }” it would give to the parser the following tokens, one at a time, when the parser asks for them:
 “public” “class” “C” “{“ “int” “c” “=” “555” “==” “4” “;” “}”

And actually, it would give the parser more information, for example, for “555” it would tell the parser that it is an integer and give it the integer.

So the parser does not have to worry about low-level details.

We have written a class Scanner that does this. It reads the input from left to right, beginning to end. It has two fields that gives the complete state of the input, indicating what part of the input has

Field token contains the next token for the parser to process

Field input contain the input after that token —the part not yet processed

Class Scanner has various methods; study each one: First read its specification; then read the body to see how it implements the specification.

CLASS EXPRESSIONCOMPILER

Class ExpressionCompiler has method main. It starts by setting up a variable kbd that contains what is needed to read from the keyboard. It stores in String variable line one line of input from the keyboard.

Then it has a loop, which (1) stores in scanner a Scanner object for the line of input, (2) parses the input to get the corresponding machine language instructions, and prints the instructions, and (3) reads the next line from the keyboard.

That’s pretty simple. The important thing to discuss is how it does the parsing.

PARSING METHODS

For each rule of the grammar —we have 3, for <Exp>, <Term>, and <Factor>— we write a parsing function, which parses according to that rule. It’s that simple.

Take a look first at method parseFactor. READ ITS SPECIFICATION CAREFULLY. Then see how it implements that specification. The rule for <Factor> has three alternatives. Therefore, the method body tests for the first alternative, which is taken if the scanner’s token is an integer. In this case, the method returns a “PUCH” operation.

In the second case, if the scanner’s token is “-“, the method, throws that token away, parses a <Factor> by calling itself recursively, and returns the machine language instructions for the <Factor> followed by the “NEG” operation.

In the third case, the method tests whether the scanners token is “(“; if so, it throws it away, parses the <Exp>, checks to make sure that the next token is “)” (and thorws it away), and returns the code produces by the <Exp>

Important here is that THE GRAMMAR RULE DICTATES EXACTLY WHAT THE CODE MUST DO.

This is also the case for the other to rules, for <Exp> and <Term>. They have the complication that the rule contains {…}, which means 0 or more occurrences of the thing inside. This leads naturally to the use of a while loop. Take a look.
