Analysis of Merge-Sort

public static Comparable[] mergeSort(Comparable[] A, int low, int high) {
 if (low < high) {
 // at least 2 elements?
 int mid = (low + high)/2;
 Comparable[] A1 = mergeSort(A, low, mid);
 Comparable[] A2 = mergeSort(A, mid+1, high);
 return merge(A1, A2);
 }

}

• Recurrence describing computation time:
 – $T(n) = c + d + e + f + 2 \ T(n/2) + g \cdot n + h$ ← recurrence
 – $T(1) = i$ ← base case

• How do we solve this recurrence?
Analysis of Merge-Sort

• Recurrence:
 – \(T(n) = c + d + e + f + 2 \, T(n/2) + g \, n + h \)
 – \(T(1) = i \)

• First, simplify by dropping lower-order terms and replacing constants by their max
 – \(T(n) = 2 \, T(n/2) + a \, n \)
 – \(T(1) = b \)

• Simplify even more. Consider only the number of comparisons.
 – \(T(n) = 2 \, T(n/2) + n \)
 – \(T(1) = 0 \)

• How do we find the solution?
Solving Recurrences

• Unfortunately, solving recurrences is like solving differential equations
 – No general technique works for all recurrences

• Luckily, can get by with a few common patterns

• You learn some more techniques in CS2800
Analysis of Merge-Sort

• Recurrence for number of comparisons of MergeSort
 – $T(n) = 2T(n/2) + n$
 – $T(1) = 0$
 – $T(2) = 2$

• To show: $T(n)$ is $O(n \log(n))$ for $n \in \{2,4,8,16,32,...\}$
 – Restrict to powers of two to keep algebra simpler

• Proof: use induction on $n \in \{2,4,8,16,32,...\}$
 – Show $P(n) = \{T(n) \leq c \cdot n \log(n)\}$ for some fixed constant c.
 – Base: $P(2)$
 • $T(2) = 2 \leq c \cdot 2 \log(2)$ using $c=1$
 – Strong inductive hypothesis: $P(m) = \{T(m) \leq c \cdot m \log(m)\}$ is true for all $m \in \{2,4,8,16,32,...,k\}$.
 – Induction step: $P(2) \land P(4) \land ... \land P(k) \implies P(2k)$
 • $T(2k) \leq 2T(2k/2) + (2k) \leq 2(c \cdot k \log(k)) + (2k) \leq c \cdot (2k) \log(k) + c \cdot (2k)$
 $= c \cdot (2k) (\log(k) + 1) = c \cdot (2k) \log(2k)$ for $c \geq 1$
Solving Recurrences

- Recurrences are important when using divide & conquer to design an algorithm.

Solution techniques:
- Can sometimes change variables to get a simpler recurrence.
- Make a guess, then prove the guess correct by induction.
- Build a recursion tree and use it to determine solution.
- Can use the Master Method:
 - A “cookbook” scheme that handles many common recurrences.

Master Method:
To solve $T(n) = a \cdot T(n/b) + f(n)$
compare $f(n)$ with $n^{\log_b a}$

- Solution is $T(n) = O(f(n))$ if $f(n)$ grows more rapidly.
- Solution is $T(n) = O(n^{\log_b a})$ if $n^{\log_b a}$ grows more rapidly.
- Solution is $T(n) = O(f(n) \log n)$ if both grow at same rate.

Not an exact statement of the theorem – $f(n)$ must be “well-behaved”.
Recurrence Examples

Some common cases:

- $T(n) = T(n - 1) + 1$ \hspace{1cm} T(n) is $O(n)$ \hspace{1cm} Linear Search
- $T(n) = T(n - 1) + n$ \hspace{1cm} T(n) is $O(n^2)$ \hspace{1cm} QuickSort worst-case
- $T(n) = T(n/2) + 1$ \hspace{1cm} T(n) is $O(\log n)$ \hspace{1cm} Binary Search
- $T(n) = T(n/2) + n$ \hspace{1cm} T(n) is $O(n)$
- $T(n) = 2T(n/2) + n$ \hspace{1cm} T(n) is $O(n \log n)$ \hspace{1cm} MergeSort
- $T(n) = 2T(n - 1)$ \hspace{1cm} T(n) is $O(2^n)$
<table>
<thead>
<tr>
<th></th>
<th>10</th>
<th>50</th>
<th>100</th>
<th>300</th>
<th>1000</th>
</tr>
</thead>
<tbody>
<tr>
<td>5n</td>
<td>50</td>
<td>250</td>
<td>500</td>
<td>1500</td>
<td>5000</td>
</tr>
<tr>
<td>nlogn</td>
<td>33</td>
<td>282</td>
<td>665</td>
<td>2469</td>
<td>9966</td>
</tr>
<tr>
<td>n^2</td>
<td>100</td>
<td>2500</td>
<td>10,000</td>
<td>90,000</td>
<td>1,000,000</td>
</tr>
<tr>
<td>n^3</td>
<td>1000</td>
<td>125,000</td>
<td>1,000,000</td>
<td>27 million</td>
<td>1 billion</td>
</tr>
<tr>
<td>2^n</td>
<td>1024</td>
<td>a 16-digit number</td>
<td>a 31-digit number</td>
<td>a 91-digit number</td>
<td>a 302-digit number</td>
</tr>
<tr>
<td>n!</td>
<td>3.6 million</td>
<td>a 65-digit number</td>
<td>a 161-digit number</td>
<td>a 623-digit number</td>
<td>unimaginably large</td>
</tr>
<tr>
<td>n^n</td>
<td>10 billion</td>
<td>an 85-digit number</td>
<td>a 201-digit number</td>
<td>a 744-digit number</td>
<td>unimaginably large</td>
</tr>
</tbody>
</table>

- protons in the known universe ~ 126 digits
- μsec since the big bang ~ 24 digits

- Source: D. Harel, *Algorithmics*
How long would it take @ 1 instruction / μsec?

<table>
<thead>
<tr>
<th>10</th>
<th>20</th>
<th>50</th>
<th>100</th>
<th>300</th>
</tr>
</thead>
<tbody>
<tr>
<td>(n^2)</td>
<td>(\frac{1}{10,000}) sec</td>
<td>(\frac{1}{2500}) sec</td>
<td>(\frac{1}{400}) sec</td>
<td>(\frac{1}{100}) sec</td>
</tr>
<tr>
<td>(n)</td>
<td>(\frac{1}{10}) sec</td>
<td>3.2 sec</td>
<td>5.2 min</td>
<td>2.8 hr</td>
</tr>
<tr>
<td>(2^n)</td>
<td>(\frac{1}{1000}) sec</td>
<td>1 sec</td>
<td>35.7 yr</td>
<td>400 trillion centuries</td>
</tr>
<tr>
<td>(n^n)</td>
<td>2.8 hr</td>
<td>3.3 trillion years</td>
<td>a 70-digit number of centuries</td>
<td>a 185-digit number of centuries</td>
</tr>
</tbody>
</table>

- The big bang was 15 billion years ago \((5 \cdot 10^{17}\) secs\)

- Source: D. Harel, *Algorithmics*
The Fibonacci Function

• Mathematical definition:
 – fib(0) = 0
 – fib(1) = 1
 – fib(n) = fib(n − 1) + fib(n − 2), n ≥ 2

```c
int fib(int n) {
    if (n == 0 || n == 1) return n;
    else return fib(n-1) + fib(n-2);
}
```

• Fibonacci sequence: 0, 1, 1, 2, 3, 5, 8, 13, ...
Recursive Execution

```c
int fib(int n) {
    if (n == 0 || n == 1) return n;
    else return fib(n-1) + fib(n-2);
}
```

Execution of fib(4):

```
  fib(4)
     /  \
   /    \
fib(3)  fib(2)
   /  \
  /    \
fib(2)  fib(1)
   /  \
  /    \
fib(1)  fib(0)
   /  \
  /    \
fib(1)  fib(0)
```
The Fibonacci Recurrence

int fib(int n) {
 if (n == 0 || n == 1) return n;
 else return fib(n-1) + fib(n-2);
}

• Recurrence for computation time:
 – T(0) = a
 – T(1) = a
 – T(n) = T(n – 1) + T(n – 2) + a

• What is computation time?
Analysis of Recursive Fib

- Recurrence for computation time of fib
 - $T(0) = a$
 - $T(1) = a$
 - $T(n) = T(n - 1) + T(n - 2) + a$

- To show: $T(n)$ is $O(2^n)$

- Proof: use induction on n
 - Show $P(n) = \{T(n) \leq c \cdot 2^n\}$ for some fixed constant c.
 - Basis: $P(0)$
 - $T(0) = a \leq c \cdot 2^0$ using $c=a$
 - Basis: $P(1)$
 - $T(1) = a \leq c \cdot 2^1$ using $c=a$
 - Strong inductive hypothesis: $P(m) = \{T(m) \leq c \cdot 2^m\}$ is true for all $m \leq k$.
 - Induction step: $P(0) \land \ldots \land P(k) \Rightarrow P(k+1)$
 - $T(k+1) \leq T(k) + T(k-1) + a \leq c \cdot 2^k + c \cdot 2^{k-1} + a = c \cdot \frac{3}{4} \cdot 2^{k+1} + a \leq c \cdot 2^{k+1}$
 for any $c \geq \frac{1}{4} a$ and any $n \geq 2$.
The Golden Ratio

Actually, can prove a tighter bound than $O(2^n)$.

$$\varphi = \frac{a+b}{b} = \frac{b}{a}$$

$$\varphi^2 = \varphi + 1$$

$$\varphi = \frac{1 + \sqrt{5}}{2}$$

$$= 1.618...$$

ratio of sum of sides $(a+b)$ to longer side (b)

gleichung

ratio of longer side (b) to shorter side (a)
Fibonacci Recurrence is $O(\varphi^n)$

- **Simplification:** Ignore constant effort in recursive case.
 - $T(0) = a$
 - $T(1) = a$
 - $T(n) = T(n - 1) + T(n - 2)$

- **Want to show** $T(n) \leq c\varphi^n$ for all $n \geq 0$.
 - have $\varphi^2 = \varphi + 1$
 - multiplying by $c\varphi^n \rightarrow c\varphi^{n+2} = c\varphi^{n+1} + c\varphi^n$

- **Base:**
 - $T(0) = c = c\varphi^0$ for $c = a$
 - $T(1) = c \leq c\varphi^1$ for $c = a$

- **Induction step:**
 - $T(n+2) = T(n+1) + T(n) \leq c\varphi^{n+1} + c\varphi^n = c\varphi^{n+2}$
Can We Do Better?

```c
if (n <= 1) return n;
int parent = 0;
int current = 1;
for (int i = 2; i <= n; i++) {
    int next = current + parent;
    parent = current;
    current = next;
}
return (current);
```

Time Complexity:
- Number of times loop is executed? \(n - 1 \)
- Number of basic steps per loop? Constant

\(\Rightarrow \) Complexity of iterative algorithm = \(O(n) \)

Much, much, much, much, better than \(O(\phi^n) \)!
...But We Can Do Even Better!

- Denote with f_n the n-th Fibonacci number
 - $f_0 = 0$
 - $f_1 = 1$
 - $f_{n+2} = f_{n+1} + f_n$

- Note that
 \[
 \begin{pmatrix}
 0 & 1 \\
 1 & 1
 \end{pmatrix}
 \begin{pmatrix}
 f_n \\
 f_{n+1}
 \end{pmatrix}
 =
 \begin{pmatrix}
 f_{n+1} \\
 f_{n+2}
 \end{pmatrix},
 \text{thus}
 \begin{pmatrix}
 0 & 1 \\
 1 & 1
 \end{pmatrix}
 \begin{pmatrix}
 f_0 \\
 f_1
 \end{pmatrix}
 =
 \begin{pmatrix}
 f_n \\
 f_{n+1}
 \end{pmatrix}
 \]

- Can compute nth power of matrix by repeated squaring in $O(\log n)$ time.
 - Gives complexity $O(\log n)$
 - A little cleverness got us from exponential to logarithmic.
But We Are Not Done Yet...

• Would you believe constant time?

\[f_n = \frac{\phi^n - \phi'^n}{\sqrt{5}} \]

where \(\phi = \frac{1 + \sqrt{5}}{2} \) \quad \phi' = \frac{1 - \sqrt{5}}{2} \]
Matrix Mult in Less Than $O(n^3)$

• Idea (Strassen's Algorithm): naive 2 x 2 matrix multiplication takes 8 scalar multiplications, but we can do it in 7:

$$\begin{pmatrix} a & b \\ c & d \end{pmatrix} \begin{pmatrix} e & f \\ g & h \end{pmatrix} = \begin{pmatrix} s_1 + s_2 - s_4 + s_6 & s_4 + s_5 \\ s_6 + s_7 & s_2 - s_3 + s_5 - s_7 \end{pmatrix}$$

• where
 - $s_1 = (b - d)(g + h)$
 - $s_2 = (a + d)(e + h)$
 - $s_3 = (a - c)(e + f)$
 - $s_4 = h(a + b)$
 - $s_5 = a(f - h)$
 - $s_6 = d(g - e)$
 - $s_7 = e(c + d)$
Now Apply This Recursively – Divide and Conquer!

• Break $2^{n+1} \times 2^{n+1}$ matrices up into 4 $2^n \times 2^n$ submatrices

• Multiply them the same way

\[
\begin{pmatrix}
A & B \\
C & D
\end{pmatrix}
\begin{pmatrix}
E & F \\
G & H
\end{pmatrix}
=
\begin{pmatrix}
S_1 + S_2 - S_4 + S_6 & S_4 + S_5 \\
S_6 + S_7 & S_2 - S_3 + S_5 - S_7
\end{pmatrix}
\]

• where

\[
S_1 = (B - D)(G + H) \\
S_2 = (A + D)(E + H) \\
S_3 = (A - C)(E + F) \\
S_4 = H(A + B) \\
S_5 = A(F - H) \\
S_6 = D(G - E) \\
S_7 = E(C + D)
\]
Now Apply This Recursively – Divide and Conquer!

• Recurrence for the runtime of Strassen’s Alg
 – $M(n) = 7 M(n/2) + cn^2$
 – Solution is $M(n) = O(n^{\log_7 7}) = O(n^{2.81})$

• Number of additions
 – Separate proof
 – Number of additions is $O(n^2)$
Is That the Best You Can Do?

• How about 3 x 3 for a base case?
 – best known is 23 multiplications
 – not good enough to beat Strassen

• In 1978, Victor Pan discovered how to multiply 70 x 70 matrices with 143640 multiplications, giving $O(n^{2.795...})$

• Best bound to date (obtained by entirely different methods) is $O(n^{2.376...})$ (Coppersmith & Winograd 1987)

• Best known lower bound is still $\Omega(n^2)$
Moral: Complexity Matters!

• But you are acquiring the best tools to deal with it!