

SPANNING TREES

Lecture 20 CS2110 - Fall 2014

Spanning Trees

- Definitions
- Minimum spanning trees
- 3 greedy algorithms (incl. Kruskal's & Prim's)
- Concluding comments:
 - Greedy algorithms
 - Travelling salesman problem

Undirected Trees

 An undirected graph is a tree if there is exactly one simple path between any pair of vertices

Facts About Trees

- |E| = |V| 1
- connected
- no cycles

In fact, any two of these properties imply the third, and imply that the graph is a tree

Spanning Trees

A *spanning tree* of a connected undirected graph (V,E) is a subgraph (V,E') that is a tree

Spanning Trees

A *spanning tree* of a connected undirected graph (V,E) is a subgraph (V,E') that is a tree

- Same set of vertices V
- E' ⊆ E
- (V,E') is a tree

Spanning Trees: Examples

http://mathworld.wolfram.com/SpanningTree.html

A subtractive method

Start with the whole graph – it is connected

 If there is a cycle, pick an edge on the cycle, throw it out – the graph is still
 connected (why?)

 Repeat until no more cycles

A subtractive method

Start with the whole graph – it is connected

 If there is a cycle, pick an edge on the cycle, throw it out – the graph is still
 connected (why?)

 Repeat until no more cycles

A subtractive method

Start with the whole graph – it is connected

 If there is a cycle, pick an edge on the cycle, throw it out – the graph is still
 connected (why?)

 Repeat until no more cycles

- Start with no edges there are no cycles
- If more than one connected component, insert an edge between them – still no cycles (why?)
- Repeat until only one component

- Start with no edges there are no cycles
- If more than one connected component, insert an edge between them – still no cycles (why?)
- Repeat until only one component

- Start with no edges there are no cycles
- If more than one connected component, insert an edge between them – still no cycles (why?)
- Repeat until only one component

- Start with no edges there are no cycles
- If more than one connected component, insert an edge between them – still no cycles (why?)
- Repeat until only one component

- Start with no edges there are no cycles
- If more than one connected component, insert an edge between them – still no cycles (why?)
- Repeat until only one component

- Start with no edges there are no cycles
- If more than one connected component, insert an edge between them – still no cycles (why?)
- Repeat until only one component

Minimum Spanning Trees

- Suppose edges are weighted, and we want a spanning tree of *minimum cost* (sum of edge weights)
- Some graphs have exactly one minimum spanning tree. Others have multiple trees with the same cost, any of which is a minimum spanning tree

Minimum Spanning Trees

 Suppose edges are weighted, and we want a spanning tree of minimum cost (sum of edge weights)

 Useful in network routing & other applications

 For example, to stream a video

B. Find a min weight edge – if it forms a cycle with edges already taken, throw it out, otherwise keep it

B. Find a min weight edge – if it forms a cycle with edges already taken, throw it out, otherwise keep it

B. Find a min weight edge – if it forms a cycle with edges already taken, throw it out, otherwise keep it

B. Find a min weight edge – if it forms a cycle with edges already taken, throw it out, otherwise keep it

B. Find a min weight edge – if it forms a cycle with edges already taken, throw it out, otherwise keep it

B. Find a min weight edge – if it forms a cycle with edges already taken, throw it out, otherwise keep it

B. Find a min weight edge – if it forms a cycle with edges already taken, throw it out, otherwise keep it

C. Start with any vertex, add min weight edge extending that connected component that does not form a cycle

C. Start with any vertex, add min weight edge extending that connected component that does not form a cycle

C. Start with any vertex, add min weight edge extending that connected component that does not form a cycle

C. Start with any vertex, add min weight edge extending that connected component that does not form a cycle

C. Start with any vertex, add min weight edge extending that connected component that does not form a cycle

C. Start with any vertex, add min weight edge extending that connected component that does not form a cycle

C. Start with any vertex, add min weight edge extending that connected component that does not form a cycle

• When edge weights are all distinct, or if there is exactly one minimum spanning tree, the 3 algorithms all find the identical tree

Prim's Algorithm

```
prim(s) {
   D[s] = 0; //start vertex
   D[i] = ∞ for all i≠s;
   while (some vertices are unmarked) {
      v = unmarked vertex with smallest D;
      mark v;
      for (each w adj to v)
         D[w] = min(D[w], c(v,w));
   }
}
```

- O(n²) for adj matrix
- While-loop is executed n times
- For-loop takes O(n) time

- \square O(m + n log n) for adj list
 - Use a PQ
 - Regular PQ produces time O(n + m log m)
 - □ Can improve to O(m + n log n) using a fancier heap

Application of MST

■ Maze generation using Prim's algorithm

The generation of a maze using Prim's algorithm on a randomly weighted grid graph that is 30x20 in size.

http://en.wikipedia.org/wiki/File:MAZE_30x20_Prim.ogv

More complicated maze generation

http://www.cgl.uwaterloo.ca/~csk/projects/mazes/

- □ These are examples of Greedy Algorithms
- ☐ The Greedy Strategy is an algorithm design technique
 - Like Divide & Conquer
- □ Greedy algorithms are used to solve optimization problems
 - The goal is to find the best solution
- Works when the problem has the greedy-choice property
 - A global optimum can be reached by making locally optimum choices

- □ Example: Change Making Problem
 - □ Given an amount of money, find the smallest number of coins to make that amount
- □ Solution: Use a Greedy Algorithm
 - □ Give as many large coins as you can
- □ This greedy strategy produces the optimum number of coins for the US coin system
- □ Different money system ⇒ greedy strategy may fail
 - □ Example: old UK system

Similar Code Structures

```
while (some vertices are
          unmarked) {
    v = best unmarked vertex
    mark v;
    for (each w adj to v)
          update D[w];
}
```

- Breadth-first-search (bfs)
- -best: next in queue
- -update: D[w] = D[v]+1
- Dijkstra's algorithm
- –best: next in priority queue
- -update: D[w] = min(D[w], D[v]+c(v,w))
- Prim's algorithm
- -best: next in priority queue
- -update: D[w] = min(D[w], c(v,w))

here c(v,w) is the $v \rightarrow w$ edge weight

Traveling Salesman Problem

- Given a list of cities and the distances between each pair, what is the shortest route that visits each city exactly once and returns to the origin city?
 - The true TSP is very hard (NP complete)... for this we want the <u>perfect</u> answer in all cases, and can't revisit.
 - Most TSP algorithms start with a spanning tree, then "evolve" it into a TSP solution. Wikipedia has a lot of information about packages you can download...