SPANNING TREES

Lecture 20
CS2110 – Fall 2014
Spanning Trees

- Definitions
- Minimum spanning trees
- 3 greedy algorithms (incl. Kruskal’s & Prim’s)

Concluding comments:
- Greedy algorithms
- Travelling salesman problem
Undirected Trees

• An undirected graph is a *tree* if there is exactly one simple path between any pair of vertices
Facts About Trees

- $|E| = |V| - 1$
- connected
- no cycles

In fact, any two of these properties imply the third, and imply that the graph is a tree
A *spanning tree* of a connected undirected graph \((V,E)\) is a subgraph \((V,E')\) that is a tree.
A *spanning tree* of a connected undirected graph \((V,E)\) is a subgraph \((V,E')\) that is a tree

- Same set of vertices \(V\)
- \(E' \subseteq E\)
- \((V,E')\) is a tree
Spanning Trees: Examples

http://mathworld.wolfram.com/SpanningTree.html
Finding a Spanning Tree

A subtractive method

• Start with the whole graph – it is connected

• If there is a cycle, pick an edge on the cycle, throw it out – the graph is still connected (why?)

• Repeat until no more cycles
Finding a Spanning Tree

A subtractive method

• Start with the whole graph – it is connected

• If there is a cycle, pick an edge on the cycle, throw it out – the graph is still connected (why?)

• Repeat until no more cycles
Finding a Spanning Tree

A subtractive method

• Start with the whole graph – it is connected
• If there is a cycle, pick an edge on the cycle, throw it out – the graph is still connected (why?)
• Repeat until no more cycles
An additive method

- Start with no edges – there are no cycles
- If more than one connected component, insert an edge between them – still no cycles (why?)
- Repeat until only one component
Finding a Spanning Tree

An additive method

• Start with no edges – there are no cycles

• If more than one connected component, insert an edge between them – still no cycles (why?)

• Repeat until only one component
An additive method

• Start with no edges – there are no cycles

• If more than one connected component, insert an edge between them – still no cycles (why?)

• Repeat until only one component
Finding a Spanning Tree

An additive method

• Start with no edges – there are no cycles

• If more than one connected component, insert an edge between them – still no cycles (why?)

• Repeat until only one component
Finding a Spanning Tree

An additive method

• Start with no edges – there are no cycles

• If more than one connected component, insert an edge between them – still no cycles (why?)

• Repeat until only one component
Finding a Spanning Tree

An additive method

• Start with no edges – there are no cycles

• If more than one connected component, insert an edge between them – still no cycles (why?)

• Repeat until only one component
Minimum Spanning Trees

• Suppose edges are weighted, and we want a spanning tree of \textit{minimum cost} (sum of edge weights)

• Some graphs have exactly one minimum spanning tree. Others have multiple trees with the same cost, any of which is a minimum spanning tree
Minimum Spanning Trees

• Suppose edges are weighted, and we want a spanning tree of *minimum cost* (sum of edge weights)

• Useful in network routing & other applications

• For example, to stream a video
3 Greedy Algorithms

A. Find a max weight edge – if it is on a cycle, throw it out, otherwise keep it
A. Find a max weight edge – if it is on a cycle, throw it out, otherwise keep it.
A. Find a max weight edge – if it is on a cycle, throw it out, otherwise keep it.
A. Find a max weight edge – if it is on a cycle, throw it out, otherwise keep it.
A. Find a max weight edge – if it is on a cycle, throw it out, otherwise keep it.
3 Greedy Algorithms

A. Find a max weight edge – if it is on a cycle, throw it out, otherwise keep it
3 Greedy Algorithms

A. Find a max weight edge – if it is on a cycle, throw it out, otherwise keep it
A. Find a max weight edge – if it is on a cycle, throw it out, otherwise keep it.
3 Greedy Algorithms

B. Find a min weight edge – if it forms a cycle with edges already taken, throw it out, otherwise keep it.

Kruskal's algorithm
3 Greedy Algorithms

B. Find a min weight edge – if it forms a cycle with edges already taken, throw it out, otherwise keep it

Kruskal's algorithm
3 Greedy Algorithms

B. Find a min weight edge – if it forms a cycle with edges already taken, throw it out, otherwise keep it

Kruskal's algorithm
3 Greedy Algorithms

B. Find a min weight edge – if it forms a cycle with edges already taken, throw it out, otherwise keep it

Kruskal's algorithm
3 Greedy Algorithms

B. Find a min weight edge – if it forms a cycle with edges already taken, throw it out, otherwise keep it

Kruskal's algorithm
3 Greedy Algorithms

B. Find a min weight edge – if it forms a cycle with edges already taken, throw it out, otherwise keep it

Kruskal's algorithm
3 Greedy Algorithms

B. Find a min weight edge – if it forms a cycle with edges already taken, throw it out, otherwise keep it

Kruskal's algorithm
C. Start with any vertex, add min weight edge extending that connected component that does not form a cycle

Prim's algorithm
(reminiscent of Dijkstra's algorithm)
3 Greedy Algorithms

C. Start with any vertex, add min weight edge extending that connected component that does not form a cycle

Prim's algorithm
(reminiscent of Dijkstra's algorithm)
3 Greedy Algorithms

C. Start with any vertex, add min weight edge extending that connected component that does not form a cycle

Prim's algorithm (reminiscent of Dijkstra's algorithm)
C. Start with any vertex, add min weight edge extending that connected component that does not form a cycle

Prim's algorithm
(reminiscent of Dijkstra's algorithm)
C. Start with any vertex, add min weight edge extending that connected component that does not form a cycle

Prim's algorithm
(reminiscent of Dijkstra's algorithm)
3 Greedy Algorithms

C. Start with any vertex, add min weight edge extending that connected component that does not form a cycle

Prim's algorithm (reminiscent of Dijkstra's algorithm)
3 Greedy Algorithms

C. Start with any vertex, add min weight edge extending that connected component that does not form a cycle

Prim's algorithm
(reminiscent of Dijkstra's algorithm)
3 Greedy Algorithms

• When edge weights are all distinct, or if there is exactly one minimum spanning tree, the 3 algorithms all find the identical tree
Prim’s Algorithm

```haskell
prim(s) {
    D[s] = 0; // start vertex
    D[i] = \infty for all i\neq s;
    while (some vertices are unmarked) {
        v = unmarked vertex with smallest D;
        mark v;
        for (each w adj to v)
            D[w] = \min(D[w], c(v,w));
    }
}
```

- **O(n²)** for adj matrix
 - While-loop is executed n times
 - For-loop takes O(n) time

- **O(m + n log n)** for adj list
 - Use a PQ
 - Regular PQ produces time \(O(n + m \log m)\)
 - Can improve to \(O(m + n \log n)\) using a fancier heap
Application of MST

- Maze generation using Prim’s algorithm

The generation of a maze using Prim's algorithm on a randomly weighted grid graph that is 30x20 in size.

More complicated maze generation

http://www.cgl.uwaterloo.ca/~csk/projects/mazes/
These are examples of **Greedy Algorithms**

- **The Greedy Strategy** is an algorithm design technique
 - Like Divide & Conquer

- Greedy algorithms are used to solve optimization problems
 - The goal is to find the best solution

- Works when the problem has the greedy-choice property
 - A global optimum can be reached by making locally optimum choices

Example: Change Making Problem

- Given an amount of money, find the smallest number of coins to make that amount

Solution: Use a Greedy Algorithm

- Give as many large coins as you can

- This greedy strategy produces the optimum number of coins for the US coin system

- Different money system ⇒ greedy strategy may fail

 - Example: old UK system
while (some vertices are unmarked) {
 v = best unmarked vertex
 mark v;
 for (each w adj to v)
 update D[w];
}

• Breadth-first-search (bfs)
 – best: next in queue
 – update: D[w] = D[v]+1
• Dijkstra’s algorithm
 – best: next in priority queue
 – update: D[w] = min(D[w], D[v]+c(v,w))
• Prim’s algorithm
 – best: next in priority queue
 – update: D[w] = min(D[w], c(v,w))

here c(v,w) is the v→w edge weight
Traveling Salesman Problem

- Given a list of cities and the distances between each pair, what is the shortest route that visits each city exactly once and returns to the origin city?
 - The true TSP is very hard (NP complete)... for this we want the **perfect** answer in all cases, and can’t revisit.
 - Most TSP algorithms start with a spanning tree, then “evolve” it into a TSP solution. Wikipedia has a lot of information about packages you can download...