PRIORITY QUEUES AND HEAPS

Lecture 16
CS2110 Fall 2014
Reminder: A4 Collision Detection

- Due tonight by midnight
Readings and Homework

Read Chapter 26 “A Heap Implementation” to learn about heaps

Exercise: Salespeople often make matrices that show all the great features of their product that the competitor’s product lacks. Try this for a heap versus a BST. First, try and sell someone on a BST: List some desirable properties of a BST that a heap lacks. Now be the heap salesperson: List some good things about heaps that a BST lacks. Can you think of situations where you would favor one over the other?

With ZipUltra heaps, you’ve got it made in the shade my friend!
The Bag Interface

A Bag:

```java
interface Bag<E> {
    void insert(E obj);
    E extract(); // extract some element
    boolean isEmpty();
}
```

Like a Set except that a value can be in it more than once. Example: a bag of coins

Refinements of Bag: Stack, Queue, PriorityQueue
Stacks and Queues as Lists

• Stack (LIFO) implemented as list
 – \texttt{insert()}, \texttt{extract()} from front of list
• Queue (FIFO) implemented as list
 – \texttt{insert()} on back of list, \texttt{extract()} from front of list
• These operations are \(O(1)\)
Priority Queue

• A Bag in which data items are Comparable

• lesser elements (as determined by compareTo()) have higher priority

• extract() returns the element with the highest priority = least in the compareTo() ordering

• break ties arbitrarily
Examples of Priority Queues

Scheduling jobs to run on a computer
default priority = arrival time
priority can be changed by operator

Scheduling events to be processed by an event handler
priority = time of occurrence

Airline check-in
first class, business class, coach
FIFO within each class
java.util.PriorityQueue\<E\>

boolean add(E e) {...} //insert an element (insert)

void clear() {...} //remove all elements

E peek() {...} //return min element without removing
 //(null if empty)

E poll() {...} //remove min element (extract)
 //(null if empty)

int size() {...}
Priority Queues as Lists

• Maintain as unordered list
 – `insert()` put new element at front – $O(1)$
 – `extract()` must search the list – $O(n)$

• Maintain as ordered list
 – `insert()` must search the list – $O(n)$
 – `extract()` get element at front – $O(1)$

• In either case, $O(n^2)$ to process n elements

Can we do better?
Important Special Case

• Fixed number of priority levels 0,...,p – 1
• FIFO within each level
• Example: airline check-in

• \textit{insert}() – insert in appropriate queue – \(O(1)\)
• \textit{extract}() – must find a nonempty queue – \(O(p)\)
Heaps

• A heap is a concrete data structure that can be used to implement priority queues

• Gives better complexity than either ordered or unordered list implementation:
 - \texttt{insert}(): $O(\log n)$
 - \texttt{extract}(): $O(\log n)$

• $O(n \log n)$ to process n elements

• Do not confuse with heap memory, where the Java virtual machine allocates space for objects – different usage of the word heap
Heaps

• Binary tree with data at each node
• Satisfies the *Heap Order Invariant*:

 The least (highest priority) element of any subtree is found at the root of that subtree.

• Size of the heap is “fixed” at n. (But can usually double n if heap fills up)
Smallest element in any subtree is always found at the root of that subtree.

Note: 19, 20 < 35: Smaller elements can be deeper in the tree!
Examples of Heaps

• Ages of people in family tree
 – parent is always older than children, but you can have an uncle who is younger than you

• Salaries of employees of a company
 – bosses generally make more than subordinates, but a VP in one subdivision may make less than a Project Supervisor in a different subdivision
Balanced Heaps

These add two restrictions:

1. Any node of depth < d – 1 has exactly 2 children, where d is the height of the tree
 – implies that any two maximal paths (path from a root to a leaf) are of length d or d – 1, and the tree has at least 2^d nodes

• All maximal paths of length d are to the left of those of length d – 1
Example of a Balanced Heap

d = 3
Store in an ArrayList or Vector

- Elements of the heap are stored in the array in order, going across each level from left to right, top to bottom.
- The children of the node at array index n are at indices $2n + 1$ and $2n + 2$.
- The parent of node n is node $(n – 1)/2$.
Store in an ArrayList or Vector

children of node n are found at $2n + 1$ and $2n + 2$
Store in an ArrayList or Vector

Children of node n are found at 2n + 1 and 2n + 2
insert()

- Put the new element at the end of the array
- If this violates heap order because it is smaller than its parent, swap it with its parent
- Continue swapping it up until it finds its rightful place
- The heap invariant is maintained!
insert()

- Time is $O(\log n)$, since the tree is balanced
 - size of tree is exponential as a function of depth
 - depth of tree is logarithmic as a function of size
insert()

```java
/** An instance of a priority queue */
class PriorityQueue<E> extends java.util.Vector<E> {

    /** Insert e into the priority queue */
    public void insert(E e) {
        super.add(e); // add to end of array
        bubbleUp(size() - 1); // given on next slide
    }
}
```
insert()

class PriorityQueue<E> extends java.util.Vector<E> {

 /** Bubble element k up the tree */
 private void bubbleUp(int k) {

 int p = (k-1)/2; // p is the parent of k

 // inv: Every element satisfies the heap property
 // except element k might be smaller than its parent
 while (k>0 && get(k).compareTo(get(p)) < 0) {
 "swap elements k and p";
 k = p;
 p = (k-1)/2;
 }
 }
}
extract()

- Remove the least element – it is at the root
- This leaves a hole at the root – fill it in with the last element of the array
- If this violates heap order because the root element is too big, swap it down with the smaller of its children
- Continue swapping it down until it finds its rightful place
- The heap invariant is maintained!
extract()
/** Remove and return the smallest element
 (return null if list is empty) */

public E extract() {
 if (size() == 0) return null;
 E temp = get(0); // smallest value is at root
 set(0, get(size() - 1)); // move last element to root
 setSize(size() - 1); // reduce size by 1
 bubbleDown(0);
 return temp;
}
/** Bubble the root down to its heap position.
 * Pre: tree is a heap except: root may be > than a child */
private void bubbleDown() {

 int k = 0;
 // Set c to smaller of k’s children
 int c = 2*k + 2; // k’s right child
 if (c > size()-1 || get(c-1).compareTo(get(c)) < 0) c--;

 // inv tree is a heap except: element k may be > than a child.
 // Also k’s smallest child is element c
 while (c < size() && get(k).compareTo(get(c)) > 0) {
 Swap elements at k and c;
 k = c;
 c = 2*k + 2; // k’s right child
 if (c > size()-1 || get(c-1).compareTo(get(c)) < 0) c--;
 }
}
HeapSort

Given a Comparable[] array of length n,

• Put all n elements into a heap – $O(n \log n)$
• Repeatedly get the min – $O(n \log n)$

public static void heapSort(Comparable[] b) {
 PriorityQueue<Comparable> pq =
 new PriorityQueue<Comparable>(b);
 for (int i = 0; i < b.length; i++) {
 b[i] = pq.extract();
 }
}

One can do the two stages in the array itself, in place, so algorithm takes $O(1)$ space.
Many uses of priority queues & heaps

- Mesh compression: quadric error mesh simplification
- Event-driven simulation: customers in a line
- Collision detection: "next time of contact" for colliding bodies
- Data compression: Huffman coding
- Graph searching: Dijkstra's algorithm, Prim's algorithm
- AI Path Planning: A* search
- Statistics: maintain largest M values in a sequence
- Operating systems: load balancing, interrupt handling
- Discrete optimization: bin packing, scheduling
- Spam filtering: Bayesian spam filter

Surface simplification [Garland and Heckbert 1997]