We will not cover all this material
Last lecture: binary search

```
0  b.length  0  h  b.length
pre: b [ ] ?  post: b [ ] <= v | > v

inv: b [ ] <= v | ? | > v
```

```
h = -1;  t = b.length;
while (h != t-1) {
    int e = (h+t)/2;
    if (b[e] <= v) h = e;
    else t = e;
}
```

Methodology:
1. Draw the invariant as a combination of pre and post
2. Develop loop using 4 loopy questions.

Practice doing this!
Binary search: a $O(\log n)$ algorithm

<table>
<thead>
<tr>
<th>0</th>
<th>h</th>
<th>t</th>
</tr>
</thead>
<tbody>
<tr>
<td>b.length = n</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

inv: $b \leq v$? $> v$

$h = -1; \ t = b.length;$

while ($h ! = t - 1$) {

int $e = (h + t) / 2;$

if ($b[e] \leq v$) $h = e;$

else $t = e;$

}

Initially $t - h = 2^k$

Loop iterates exactly k times

Suppose initially: $b.length = 2^k - 1$

Initially, $h = -1$, $t = 2^k - 1$, $t - h = 2^k$

Can show that one iteration sets h or t so that $t - h = 2^{k-1}$

- e.g. Set e to $(h+t)/2 = (2^k - 2)/2 = 2^{k-1} - 1$
- Set t to e, i.e. to $2^{k-1} - 1$

Then $t - h = 2^{k-1} - 1 + 1 = 2^{k-1}$

Careful calculation shows that:

- each iteration halves $t - h$!!
Binary search: \(O(\log n)\) algorithm

Search array with 32767 elements, only 15 iterations!

Bsearch:
\(h = -1; \ t = b.length;\)

\[\text{while } (h \neq t-1) \{\]
\[\text{int } e = (h+t)/2;\]
\[\text{if } (b[e] \leq v) \ h = e;\]
\[\text{else } t = e;\]
\[\}\]

Each iteration takes constant time (a few assignments and an if).
Bsearch executes \(~\log n\) iterations for an array of size \(n\). So the number of assignments and if-tests made is proportional to \(\log n\).

Therefore, Bsearch is called an order \(\log n\) algorithm, written \(O(\log n)\). We formalize this notation later.

If \(n = 2^k\), \(k\) is called \(\log(n)\)
That’s the base 2 logarithm

<table>
<thead>
<tr>
<th>(n)</th>
<th>(\log(n))</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>4</td>
<td>2</td>
</tr>
<tr>
<td>8</td>
<td>3</td>
</tr>
<tr>
<td>31768</td>
<td>15</td>
</tr>
</tbody>
</table>
Linear search: Find first position of v in b (if in)

Store in h to truthify:

<table>
<thead>
<tr>
<th>pre: b</th>
<th>0</th>
<th>h</th>
<th>b.length</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>post: b</th>
<th>v not here</th>
<th>0</th>
<th>h</th>
<th>b.length</th>
</tr>
</thead>
</table>
and h = b.length or b[h] = v

<table>
<thead>
<tr>
<th>inv: b</th>
<th>v not here</th>
<th>0</th>
<th>h</th>
<th>b.length</th>
</tr>
</thead>
</table>

h = 0;
while (h != b.length && b[h] != v)
 h = h + 1;

Worst case: for array of size n, requires n iterations, each taking constant time.
Worst-case time: O(n).

Expected or average time? n/2 iterations. O(n/2) —is also O(n)
Looking at execution speed

Process an array of size n

Number of operations executed

- Constant time
- $2n + 2$ ops
- $n + 2$ ops
- n ops

n^2 ops

2n+2, n+2, n are all “order n” $O(n)$

Constant time

size n
InsertionSort

A loop that processes elements of an array in increasing order has this invariant

pre: \[b \quad ? \]

post: \[b \quad \text{sorted} \]

inv: \[b \quad \text{sorted} \quad ? \]
or: \[b[0..i-1] \text{ is sorted} \]

inv: \[b \quad \text{processed} \quad ? \]
What to do in each iteration?

inv:
- $b[0..i]$ is sorted
- $i \leq b.length$

e.g.
- $b = [2, 5, 5, 5, 7]$
- $i = 3$

Push $b[i]$ down to its shortest position in $b[0..i]$, then increase i

Will take time proportional to the number of swaps needed
// sort b[], an array of int
// inv: b[0..i-1] is sorted
for (int i = 1; i < b.length; i = i+1) {
 Push b[i] down to its sorted position in b[0..i]
}

Many people sort cards this way
Works well when input is nearly sorted

Note English statement in body. Abstraction. Says what to do, not how.
This is the best way to present it. Later, show how to implement that with a loop
InsertionSort

// sort b[], an array of int
// inv: b[0..i-1] is sorted
for (int i = 1; i < b.length; i = i+1) {
 Push b[i] down to its sorted position in b[0..i]
}

Pushing b[i] down can take i swaps.
Worst case takes
1 + 2 + 3 + ... + n-1 = (n-1)*n/2 Swaps.

• Worst-case: O(n^2)
 (reverse-sorted input)
• Best-case: O(n)
 (sorted input)
• Expected case: O(n^2)

Let n = b.length
SelectionSort

pre: \[b[0 .. b.length] \]

post: \[b[0 .. b.length] \text{ sorted} \]

inv: \[b[0 .. i] \text{ sorted, } \leq b[i ..] \geq b[0 .. i-1] \]

Keep invariant true while making progress?

\[b[0 .. i] \text{ sorted, } \leq b[i ..] \geq b[0 .. i-1] \]

e.g.: \[b[0 .. b.length] \]

Increasing i by 1 keeps inv true only if \(b[i] \) is min of \(b[i ..] \)
Another common way for people to sort cards

Runtime
- Worst-case $O(n^2)$
- Best-case $O(n^2)$
- Expected-case $O(n^2)$

//sort b[], an array of int
// inv: b[0..i-1] sorted
// b[0..i-1] <= b[i..]
for (int i= 1; i < b.length; i= i+1) {
 int m= index of minimum of b[i..];
 Swap b[i] and b[m];
}

Each iteration, swap min value of this section into b[i]
Partition algorithm of quicksort

Idea Using the pivot value x that is in b[h]:

`pre:`

<table>
<thead>
<tr>
<th>h</th>
<th>h+1</th>
<th>k</th>
</tr>
</thead>
<tbody>
<tr>
<td>x</td>
<td>?</td>
<td></td>
</tr>
</tbody>
</table>

x is called the pivot

Swap array values around until b[h..k] looks like this:

`post:`

<table>
<thead>
<tr>
<th>h</th>
<th>j</th>
<th>k</th>
</tr>
</thead>
<tbody>
<tr>
<td><= x</td>
<td>x</td>
<td>>= x</td>
</tr>
</tbody>
</table>
pivot

| 20 | 31 | 24 | 19 | 45 | 56 | 4 | 20 | 5 | 72 | 14 | 99 |

partition

| 19 | 4 | 5 | 14 | 20 |

j

| 31 | 24 | 45 | 56 | 20 | 72 | 99 |

Not yet sorted

these can be in any order

these can be in any order

Not yet sorted

The 20 could be in the other partition
Partition algorithm

pre: \[
\begin{array}{c|c|c|c|c}
 & h & h+1 & \cdots & k \\
\hline
x & b & \otimes & ? & \\
\end{array}
\]

post: \[
\begin{array}{c|c|c|c|c}
 & h & j & t & k \\
\hline
x & b & \otimes & ? & \otimes \\
\end{array}
\]

Combine pre and post to get an invariant:

\[
\begin{array}{c|c|c|c|c}
 & h & j & t & k \\
\hline
x & b & \otimes & ? & \otimes \\
\end{array}
\]
Partition algorithm

<table>
<thead>
<tr>
<th>h</th>
<th>j</th>
<th>t</th>
<th>k</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\leq x)</td>
<td>x</td>
<td>?</td>
<td>(\geq x)</td>
</tr>
</tbody>
</table>

\[j = h; \quad t = k; \]

while \(j < t \) {
 if \(b[j+1] \leq b[j] \) {
 Swap \(b[j+1] \) and \(b[j] \); \quad j = j+1;
 } else {
 Swap \(b[j+1] \) and \(b[t] \); \quad t = t-1;
 }
}

Initially, with \(j = h \) and \(t = k \), this diagram looks like the start diagram

Terminate when \(j = t \), so the “?” segment is empty, so diagram looks like result diagram

Takes linear time: \(O(k+1-h) \)
QuickSort procedure

/** Sort b[h..k]. */

public static void QS(int[] b, int h, int k) {
 if (b[h..k] has < 2 elements) return; // Base case

 int j = partition(b, h, k);
 // We know b[h..j-1] <= b[j] <= b[j+1..k]

 //Sort b[h..j-1] and b[j+1..k]
 QS(b, h, j-1);
 QS(b, j+1, k);
}
QuickSort procedure

/** Sort b[h..k]. */
public static void QS(int[] b, int h, int k) {
 if (b[h..k] has < 2 elements) return;
 int j = partition(b, h, k);
 // We know b[h..j-1] <= b[j] <= b[j+1..k]
 // Sort b[h..j-1] and b[j+1..k]
 QS(b, h, j-1);
 QS(b, j+1, k);
}

Worst-case: quadratic
Average-case: O(n log n)

Worst-case space: O(n*n)! --depth of recursion can be n
Can rewrite it to have space O(log n)
Average-case: O(n * log n)
Worst case quicksort: pivot always smallest value

<table>
<thead>
<tr>
<th>j</th>
<th>x0</th>
<th>(\geq x0)</th>
<th>partitioning at depth 0</th>
</tr>
</thead>
<tbody>
<tr>
<td>j</td>
<td>x0</td>
<td>x1</td>
<td>(\geq x1)</td>
</tr>
<tr>
<td>j</td>
<td>x0</td>
<td>x1</td>
<td>x2</td>
</tr>
</tbody>
</table>
Best case quicksort: pivot always middle value

depth 0. 1 segment of size $\sim n$ to partition.

Depth 2. 2 segments of size $\sim n/2$ to partition.

Depth 3. 4 segments of size $\sim n/4$ to partition.

Max depth: \textit{about} log n. Time to partition on each level: $\sim n$

Total time: $O(n \log n)$.

Average time for Quicksort: $n \log n$. Difficult calculation
QuickSort

Quicksort developed by Sir Tony Hoare (he was knighted by the Queen of England for his contributions to education and CS).

Will be 80 in April.

Developed Quicksort in 1958. But he could not explain it to his colleague, so he gave up on it.

Later, he saw a draft of the new language Algol 68 (which became Algol 60). It had recursive procedures. First time in a programming language. “Ah!,” he said. “I know how to write it better now.” 15 minutes later, his colleague also understood it.
Key issue: How to choose a pivot?

Choosing pivot

- Ideal pivot: the median, since it splits array in half
- But computing median of unsorted array is $O(n)$, quite complicated

Popular heuristics: Use

- first array value (not good)
- middle array value
- median of first, middle, last, values GOOD!
- Choose a random element
Quicksort with logarithmic space

Problem is that if the pivot value is always the smallest (or always the largest), the depth of recursion is the size of the array to sort.

Eliminate this problem by doing some of it iteratively and some recursively
Quicksort with logarithmic space

Problem is that if the pivot value is always the smallest (or always the largest), the depth of recursion is the size of the array to sort.

Eliminate this problem by doing some of it iteratively and some recursively
QuickSort with logarithmic space

/** Sort b[h..k]. */
public static void QS(int[] b, int h, int k) {
 int h1 = h; int k1 = k;
 // invariant b[h..k] is sorted if b[h1..k1] is sorted
 while (b[h1..k1] has more than 1 element) {
 Reduce the size of b[h1..k1], keeping inv true
 }
}
QuickSort with logarithmic space

```java
/** Sort b[h..k]. */

public static void QS(int[] b, int h, int k) {
    int h1 = h; int k1 = k;
    // invariant b[h..k] is sorted if b[h1..k1] is sorted
    while (b[h1..k1] has more than 1 element) {
        int j = partition(b, h1, k1);
        // b[h1..j-1] <= b[j] <= b[j+1..k1]
        if (b[h1..j-1] smaller than b[j+1..k1])
            { QS(b, h, j-1); h1 = j+1; }
        else
            {QS(b, j+1, k1); k1 = j-1; }
    }
}
```

Only the smaller segment is sorted recursively. If b[h1..k1] has size n, the smaller segment has size < n/2. Therefore, depth of recursion is at most log n