A well-known scientist (some say it was Bertrand Russell) once gave a public lecture on astronomy. He described how the earth orbits around the sun and how the sun, in turn, orbits around the center of a vast collection of stars called our galaxy.

At the end of the lecture, a little old lady at the back of the room got up and said: “What you have told us is rubbish. The world is really a flat plate supported on the back of a giant tortoise.” The scientist gave a superior smile before replying, “What is the tortoise standing on?” “You’re very clever, young man, very clever,” said the old lady, “But it’s turtles all the way down.”

Overview: Reasoning about Programs

Our broad problem: code is unlikely to be correct if we don’t have good reasons for believing it works

- We need clear problem statements
- And then a rigorous way to convince ourselves that what we wrote solves the problem
- But reasoning about programs can be hard
 - Especially with recursion, concurrency
 - Today focus on recursion

Overview: Reasoning about Programs

Recursion
- A programming strategy that solves a problem by reducing it to simpler or smaller instance(s) of the same problem

Induction
- A mathematical strategy for proving statements about natural numbers 0, 1, 2, ... (or more generally, about inductively defined objects)
- They are very closely related
- Induction can be used to establish the correctness and complexity of programs

Defining Functions

It is often useful to describe a function in different ways

- Let $S : \text{int} \rightarrow \text{int}$ be the function where $S(n)$ is the sum of the integers from 0 to n. For example,
 - $S(0) = 0$
 - $S(3) = 0 + 1 + 2 + 3 = 6$

- Definition: iterative form
 - $S(n) = 0 + 1 + ... + n$
 - $\sum_{i=0}^{n} i$

- Another characterization: closed form
 - $S(n) = \frac{n(n+1)}{2}$

Sum of Squares

A more complex example
- Let $SQ : \text{int} \rightarrow \text{int}$ be the function that gives the sum of the squares of integers from 0 to n:
 - $SQ(0) = 0$
 - $SQ(3) = 0^2 + 1^2 + 2^2 + 3^2 = 14$

- Definition (iterative form): $SQ(n) = 0^2 + 1^2 + ... + n^2$

- Is there an equivalent closed-form expression?

Closed-Form Expression for $SQ(n)$

- Sum of integers between 0 through n was $\frac{n(n+1)}{2}$ which is a quadratic in n (that is, $O(n^2)$)

 - Inspired guess: perhaps sum of squares of integers between 0 through n is a cubic in n

 - Conjecture: $SQ(n) = an^3 + bn^2 + cn + d$

 - Where a, b, c, and d are unknown coefficients

 - How can we find the values of the four unknowns?
 - Idea: Use any 4 values of n to generate 4 linear equations, and then solve
Finding Coefficients

\[SQ(n) = 0^2 + 1^2 + \ldots + n^2 = an^3 + bn^2 + cn + d \]

- Use \(n = 0, 1, 2, 3 \)
 - SQ(0) = 0 = a·0 + b·0 + c·0 + d
 - SQ(1) = 1 = a·1 + b·1 + c·1 + d
 - SQ(2) = 5 = a·8 + b·4 + c·2 + d
 - SQ(3) = 14 = a·27 + b·9 + c·3 + d
- Solve these 4 equations to get:
 - \(a = 1/3 \)
 - \(b = 1/2 \)
 - \(c = 1/6 \)
 - \(d = 0 \)

Is the Formula Correct?

- This suggests
 \[SQ(n) = 0^2 + 1^2 + \ldots + n^2 = n^3/3 + n^2/2 + n/6 \]
 \[= n(n+1)(2n+1)/6 \]
- Question: Is this closed-form solution true for all \(n \)?
 - Remember, we only used \(n = 0, 1, 2, 3 \) to determine these coefficients
 - We do not know that the closed-form expression is valid for other values of \(n \)

One Approach

- Try a few other values of \(n \) to see if they work.
 - Try \(n = 5 \):
 \[SQ(n) = 0+1+4+9+16+25 = 55 \]
 - Closed-form expression: \(5·6·11/6 = 55 \)
 - Works!
- Try some more values…
- We can never prove validity of the closed-form solution for all values of \(n \) this way, since there are an infinite number of values of \(n \)

A Recursive Definition

- To solve this problem, let’s express \(SQ(n) \) in a different way:
 - \(SQ(n) = 0^2 + 1^2 + \ldots + (n-1)^2 + n^2 \)
 - The part in the box is just \(SQ(n-1) \)
- This leads to the following recursive definition
 - \(SQ(0) = 0 \)
 - \(SQ(n) = SQ(n-1) + n^2, \quad n > 0 \)
- Thus,
 \[SQ(1) = 1^2 = SQ(0) + 1^2 = 0 + 1^2 = 1 \]
 \[SQ(2) = 5 = SQ(1) + 2^2 = 1 + 2^2 = 5 \]
 \[SQ(3) = 14 = SQ(2) + 3^2 = 5 + 3^2 = 14 \]
 \[SQ(4) = SQ(3) + 4^2 = SQ(2) + 3^2 + 4^2 = SQ(1) + 2^2 + 3^2 + 4^2 = SQ(0) + 1^2 + 2^2 + 3^2 + 4^2 = 0 + 1^2 + 2^2 + 3^2 + 4^2 = 30 \]

Are These Two Functions Equal?

- \(SQ_r (r = \text{recursive}) \)
 - \(SQ_r(0) = 0 \)
 - \(SQ_r(n) = SQ_r(n-1) + n^2, \quad n > 0 \)
- \(SQ_c (c = \text{closed-form}) \)
 - \(SQ_c(n) = n(n+1)(2n+1)/6 \)

Induction over Integers

- To prove that some property \(P(n) \) holds for all integers \(n \geq 0 \),
 1. Basis: Show that \(P(0) \) is true
 2. Induction Step: Assuming that \(P(k) \) is true for an unspecified integer \(k \), show that \(P(k+1) \) is true
- Conclusion: Because we could have picked any \(k \), we conclude that \(P(n) \) holds for all integers \(n \geq 0 \)
Dominos

- Assume equally spaced dominos, and assume that spacing between dominos is less than domino length.
- How would you argue that all dominos would fall?
- Dumb argument:
 - Domino 0 falls because we push it over
 - Domino 0 hits domino 1, therefore domino 1 falls
 - Domino 1 hits domino 2, therefore domino 2 falls
 - Domino 2 hits domino 3, therefore domino 3 falls
 - ...
- Is there a more compact argument we can make?

Better Argument

- Argument:
 - Domino 0 falls because we push it over (Base Case or Basis)
 - Assume that domino k falls over (Induction Hypothesis)
 - Because domino k’s length is larger than inter-dominio spacing, it will knock over domino k+1 (Inductive Step)
 - Because we could have picked any domino to be the kth one, we conclude that all dominos will fall over (Conclusion)
- This is an inductive argument
- This version is called weak induction
 - There is also strong induction (later)
- Not only is this argument more compact, it works for an arbitrary number of dominos!

SQ_r(n) = SQ_c(n) for all n?

- Define P(n) as SQ_r(n) = SQ_c(n)
- Prove P(0)
 - Assume P(k) for unspecified k, and then prove P(k+1) under this assumption
- Proof (by Induction)
 - Recall:
 - SQ_r(0) = 0
 - SQ_r(n) = SQ_r(n-1) + n^2, n > 0
 - SQ_c(n) = n(n+1)(2n+1)/6
 - Let P(n) be the proposition that SQ_r(n) = SQ_c(n)
 - Basis: P(0) holds because SQ_r(0) = 0 and SQ_c(0) = 0 by definition
 - Induction Hypothesis: Assume SQ_r(k) = SQ_c(k)
 - Inductive Step:
 - SQ_r(k+1) = SQ_r(k) + (k+1)^2 by definition of SQ_r(k+1)
 - = SQ_c(k) + (k+1)^2 by the Induction Hypothesis
 - = k(k+1)(2k+1)/6 + (k+1)^2 by definition of SQ_c(k)
 - = (k+1)(k+2)(2k+3)/6 algebra
 - = SQ_r(k+1) by definition of SQ_r(k+1)
 - Conclusion: SQ_r(n) = SQ_c(n) for all n ≥ 0

Another Example

- Prove that 0+1+...+n = n(n+1)/2
 - Basis: Obviously holds for n = 0
 - Induction Hypothesis: Assume 0+1+...+k = k(k+1)/2
 - Inductive Step:
 - 0+1+...+(k+1) = [0+1+...+k] + (k+1) by def
 - = k(k+1)/2 + (k+1) by I.H.
 - = k(k+1)/2 + k algebra
 - Conclusion: 0+1+...+n = n(n+1)/2 for all n ≥ 0

A Note on Base Cases

- Sometimes we are interested in showing some proposition is true for integers ≥ b
 - Intuition: we knock over domino b, and dominos in front get knocked over; not interested in 0, 1, ... , b-1
 - In general, the base case in induction does not have to be 0
 - If base case is some integer b
 - Induction proves the proposition for n = b, b+1, b+2, ...
 - Does not say anything about n = 0, 1, ..., b-1
Weak Induction: Nonzero Base Case

- **Claim:** You can make any amount of postage above 8¢ with some combination of 3¢ and 5¢ stamps
- **Basis:** True for 8¢: 8 = 3 + 5
- **Induction Hypothesis:** Suppose true for some \(k \geq 8 \)
- **Inductive Step:**
 - If used a 5¢ stamp to make \(k \), replace it by two 3¢ stamps. Get \(k+1 \).
 - If did not use a 5¢ stamp to make \(k \), must have used at least three 3¢ stamps. Replace three 3¢ stamps by two 5¢ stamps. Get \(k+1 \).
- **Conclusion:** Any amount of postage above 8¢ can be made with some combination of 3¢ and 5¢ stamps

What are the “Dominos”?

- In some problems, it can be tricky to determine how to set up the induction
- This is particularly true for geometric problems that can be attacked using induction

A Tiling Problem

- A chessboard has one square cut out of it
- Can the remaining board be tiled using tiles of the shape shown in the picture (rotation allowed)?
- Not obvious that we can use induction!

Proof Outline

- Consider boards of size \(2^n \times 2^n \) for \(n = 1, 2, \ldots \)
- **Basis:** Show that tiling is possible for \(2 \times 2 \) board
- **Induction Hypothesis:** Assume the \(2^k \times 2^k \) board can be tiled
- **Inductive Step:** Using I.H., show that the \(2^{k+1} \times 2^{k+1} \) board can be tiled
- **Conclusion:** Any \(2^n \times 2^n \) board can be tiled, \(n = 1, 2, \ldots \)
 - Our chessboard (8 x 8) is a special case of this argument
 - We will have proven the 8 x 8 special case by solving a more general problem!

Basis

- The \(2 \times 2 \) board can be tiled regardless of which one of the four pieces has been omitted

4 x 4 Case

- Divide the 4 x 4 board into four \(2 \times 2 \) sub-boards
- One of the four sub-boards has the missing piece
 - By the I.H., that sub-board can be tiled since it is a \(2 \times 2 \) board with a missing piece
- Tile center squares of three remaining sub-boards as shown
 - This leaves three \(2 \times 2 \) boards, each with a missing piece
 - We know these can be tiled by the Induction Hypothesis
2\(k+1 \times 2k+1\) case

- Divide board into four sub-boards and tile the center squares of the three complete sub-boards
- The remaining portions of the sub-boards can be tiled by the I.H. (which assumes we can tile \(2^k \times 2^k\) boards)

When Induction Fails

- Sometimes an inductive proof strategy for some proposition may fail
- This does not necessarily mean that the proposition is wrong
 - It may just mean that the particular inductive strategy you are using is the wrong choice
- A different induction hypothesis (or a different proof strategy altogether) may succeed

Tiling Example (Poor Strategy)

- Let's try a different induction strategy
- Proposition
 - Any \(n \times n\) board with one missing square can be tiled
- Problem
 - A \(3 \times 3\) board with one missing square has 8 remaining squares, but our tile has 3 squares; tiling is impossible
- Thus, any attempt to give an inductive proof of this proposition must fail
- Note that this failed proof does not tell us anything about the \(8 \times 8\) case

A Seemingly Similar Tiling Problem

- A chessboard has opposite corners cut out of it. Can the remaining board be tiled using tiles of the shape shown in the picture (rotation allowed)?
- Induction fails here. Why? (Well...for one thing, this board can't be tiled with dominos.)

Strong Induction

- We want to prove that some property \(P\) holds for all \(n\)
- Weak induction
 - \(P(0)\): Show that property \(P\) is true for 0
 - \(P(k) \Rightarrow P(k+1)\): Show that if property \(P\) is true for \(k\), it is true for \(k+1\)
 - Conclude that \(P(n)\) holds for all \(n\)
- Strong induction
 - \(P(0)\): Show that property \(P\) is true for 0
 - \(P(0)\) and \(P(1)\) and ... and \(P(k) \Rightarrow P(k+1)\): show that if \(P\) is true for numbers less than or equal to \(k\), it is true for \(k+1\)
 - Conclude that \(P(n)\) holds for all \(n\)
- Both proof techniques are equally powerful

Conclusion

- Induction is a powerful proof technique
- Recursion is a powerful programming technique
- Induction and recursion are closely related
 - We can use induction to prove correctness and complexity results about recursive programs