Announcements

- **Prelim 2: Two and a half weeks from now**
 - Tuesday, April 16, 7:30-9pm, Statler

- **Exam conflicts?**
 - We need to hear about them and can arrange a makeup
 - It would be the same day but 5:30-7:00

- **Old exams available on the course website**
These are not Graphs

...not the kind we mean, anyway
These are Graphs

K_5, $K_{3,3}$
Applications of Graphs

- Communication networks
- Routing and shortest path problems
- Commodity distribution (flow)
- Traffic control
- Resource allocation
- Geometric modeling
- ...

Graph Definitions

- A directed graph (or digraph) is a pair \((V, E)\) where
 - \(V\) is a set
 - \(E\) is a set of ordered pairs \((u, v)\) where \(u, v \in V\)
 - Usually require \(u \neq v\) (i.e., no self-loops)

- An element of \(V\) is called a vertex (pl. vertices) or node
- An element of \(E\) is called an edge or arc

- \(|V| = \) size of \(V\), often denoted \(n\)
- \(|E| = \) size of \(E\), often denoted \(m\)
Example Directed Graph (Digraph)

\[V = \{a, b, c, d, e, f\} \]
\[E = \{(a, b), (a, c), (a, e), (b, c), (b, d), (b, e), (c, d),
(c, f), (d, e), (d, f), (e, f)\} \]

\[|V| = 6, \ |E| = 11 \]
An undirected graph is just like a directed graph, except the edges are unordered pairs (sets) \(\{u,v\} \)

Example:

\[
V = \{a,b,c,d,e,f\}
\]
\[
E = \{\{a,b\}, \{a,c\}, \{a,e\}, \{b,c\}, \{b,d\}, \{b,e\}, \{c,d\}, \{c,f\}, \{d,e\}, \{d,f\}, \{e,f\}\}
\]
Some Graph Terminology

- Vertices \(u \) and \(v \) are called the *source* and *sink* of the directed edge \((u,v)\), respectively.
- Vertices \(u \) and \(v \) are called the *endpoints* of \((u,v)\).
- Two vertices are *adjacent* if they are connected by an edge.
- The *outdegree* of a vertex \(u \) in a directed graph is the number of edges for which \(u \) is the source.
- The *indegree* of a vertex \(v \) in a directed graph is the number of edges for which \(v \) is the sink.
- The *degree* of a vertex \(u \) in an undirected graph is the number of edges of which \(u \) is an endpoint.
More Graph Terminology

- A path is a sequence $v_0, v_1, v_2, \ldots, v_p$ of vertices such that $(v_i, v_{i+1}) \in E$, $0 \leq i \leq p - 1$
- The length of a path is its number of edges
 - In this example, the length is 5
- A path is simple if it does not repeat any vertices
- A cycle is a path $v_0, v_1, v_2, \ldots, v_p$ such that $v_0 = v_p$
- A cycle is simple if it does not repeat any vertices except the first and last
- A graph is acyclic if it has no cycles
- A directed acyclic graph is called a dag
Is This a Dag?

- **Intuition:**
 - If it’s a dag, there must be a vertex with indegree zero – why?

- **This idea leads to an algorithm**
 - A digraph is a dag if and only if we can iteratively delete indegree-0 vertices until the graph disappears.
Intuition:
- If it’s a dag, there must be a vertex with indegree zero – why?

This idea leads to an algorithm
- A digraph is a dag if and only if we can iteratively delete indegree-0 vertices until the graph disappears.
Is This a Dag?

Intuition:
- If it’s a dag, there must be a vertex with indegree zero – why?

This idea leads to an algorithm
- A digraph is a dag if and only if we can iteratively delete indegree-0 vertices until the graph disappears
Is This a Dag?

- Intuition:
 - If it’s a dag, there must be a vertex with indegree zero – why?

- This idea leads to an algorithm
 - A digraph is a dag if and only if we can iteratively delete indegree-0 vertices until the graph disappears
Intuition:

- If it’s a dag, there must be a vertex with indegree zero — why?

This idea leads to an algorithm

- A digraph is a dag if and only if we can iteratively delete indegree-0 vertices until the graph disappears
Is This a Dag?

- **Intuition:**
 - If it’s a dag, there must be a vertex with indegree zero – why?

- **This idea leads to an algorithm**
 - A digraph is a dag if and only if we can iteratively delete indegree-0 vertices until the graph disappears
Is This a Dag?

Intuition:
- If it’s a dag, there must be a vertex with indegree zero – why?

This idea leads to an algorithm
- A digraph is a dag if and only if we can iteratively delete indegree-0 vertices until the graph disappears
Is This a Dag?

- **Intuition:**
 - If it’s a dag, there must be a vertex with indegree zero – why?

- **This idea leads to an algorithm**
 - A digraph is a dag if and only if we can iteratively delete indegree-0 vertices until the graph disappears.
Is This a Dag?

Intuition:
- If it’s a dag, there must be a vertex with indegree zero – why?

This idea leads to an algorithm
- A digraph is a dag if and only if we can iteratively delete indegree-0 vertices until the graph disappears
Is This a Dag?

- **Intuition:**
 - If it’s a dag, there must be a vertex with indegree zero – why?

- **This idea leads to an algorithm**
 - A digraph is a dag if and only if we can iteratively delete indegree-0 vertices until the graph disappears
Is This a Dag?

Intuition:
- If it’s a dag, there must be a vertex with indegree zero — why?

This idea leads to an algorithm
- A digraph is a dag if and only if we can iteratively delete indegree-0 vertices until the graph disappears
Topological Sort

- We just computed a topological sort of the dag
 - This is a numbering of the vertices such that all edges go from lower- to higher-numbered vertices

- Useful in job scheduling with precedence constraints
A coloring of an undirected graph is an assignment of a color to each node such that no two adjacent vertices get the same color.

How many colors are needed to color this graph?
A coloring of an undirected graph is an assignment of a color to each node such that no two adjacent vertices get the same color.

How many colors are needed to color this graph?

3
An Application of Coloring

- Vertices are jobs
- Edge \((u,v)\) is present if jobs \(u\) and \(v\) each require access to the same shared resource, and thus cannot execute simultaneously
- Colors are time slots to schedule the jobs
- Minimum number of colors needed to color the graph = minimum number of time slots required
Planarity

- A graph is **planar** if it can be embedded in the plane with no edges crossing

- Is this graph planar?
Planarity

- A graph is **planar** if it can be embedded in the plane with no edges crossing.

- Is this graph planar?
 - Yes
A graph is **planar** if it can be embedded in the plane with no edges crossing.

Is this graph planar?

- Yes
Detecting Planarity

- Kuratowski's Theorem

A graph is planar if and only if it does not contain a copy of K_5 or $K_{3,3}$ (possibly with other nodes along the edges shown)
The Four-Color Theorem

Every planar graph is 4-colorable
(Appel & Haken, 1976)
A directed or undirected graph is bipartite if the vertices can be partitioned into two sets such that all edges go between the two sets.
The following are equivalent

- G is bipartite
- G is 2-colorable
- G has no cycles of odd length
Find a path of minimum distance that visits every city
Representations of Graphs

Adjacency List

Adjacency Matrix

\[
\begin{array}{cccc}
1 & 2 & 3 & 4 \\
1 & 0 & 1 & 0 & 1 \\
2 & 0 & 0 & 1 & 0 \\
3 & 0 & 0 & 0 & 0 \\
4 & 0 & 1 & 1 & 0 \\
\end{array}
\]
Adjacency Matrix or Adjacency List?

- $n =$ number of vertices
- $m =$ number of edges
- $d(u) =$ degree of $u =$ number of edges leaving u

Adjacency Matrix
- Uses space $O(n^2)$
- Can iterate over all edges in time $O(n^2)$
- Can answer “Is there an edge from u to v?” in $O(1)$ time
- Better for dense graphs (lots of edges)

Adjacency List
- Uses space $O(m+n)$
- Can iterate over all edges in time $O(m+n)$
- Can answer “Is there an edge from u to v?” in $O(d(u))$ time
- Better for sparse graphs (fewer edges)
Graph Algorithms

• Search
 – depth-first search
 – breadth-first search

• Shortest paths
 – Dijkstra's algorithm

• Minimum spanning trees
 – Prim's algorithm
 – Kruskal's algorithm
Depth-First Search

• Follow edges depth-first starting from an arbitrary vertex r, using a stack to remember where you came from
• When you encounter a vertex previously visited, or there are no outgoing edges, retreat and try another path
• Eventually visit all vertices reachable from r
• If there are still unvisited vertices, repeat
• O(m) time
Depth-First Search
Breadth-First Search

- Same, except use a queue instead of a stack to determine which edge to explore next
 - Recall: A stack is last-in, first-out (LIFO)
 - A queue is first-in, first-out (FIFO)
Breadth-First Search
Summary

- We’ve seen an introduction to graphs and will return to this topic next week on Tuesday
 - Definitions
 - Testing for a dag
 - Depth-first and breadth-first search

- On Thursday Ken and David will be out of town.
 - Dexter Kozen will do a lecture on induction
 - We use induction to prove properties of graphs and graph algorithms, so the fit is good