PRIORITY QUEUES AND HEAPS

Lecture 18
CS2110 Spring 2013
The Bag Interface

- A Bag:

```java
interface Bag<E> {
    void insert(E obj);
    E extract(); //extract some element
    boolean isEmpty();
}
```

Examples: Stack, Queue, PriorityQueue
Stacks and Queues as Lists

• Stack (LIFO) implemented as list
 – insert(), extract() from front of list

• Queue (FIFO) implemented as list
 – insert() on back of list, extract() from front of list

• All **Bag** operations are O(1)
Priority Queue

• A Bag in which data items are Comparable

• *lesser* elements (as determined by `compareTo()`) have higher priority

• `extract()` returns the element with the highest priority = least in the `compareTo()` ordering

• break ties arbitrarily
Priority Queue Examples

• Scheduling jobs to run on a computer
 – default priority = arrival time
 – priority can be changed by operator

• Scheduling events to be processed by an event handler
 – priority = time of occurrence

• Airline check-in
 – first class, business class, coach
 – FIFO within each class
java.util.PriorityQueue<E>

- boolean add(E e) {...} //insert an element (insert)
- void clear() {...} //remove all elements
- E peek() {...} //return min element without removing
 // (null if empty)
- E poll() {...} //remove min element (extract)
 // (null if empty)
- int size() {...}
Priority Queues as Lists

- Maintain as unordered list
 - `insert()` puts new element at front – $O(1)$
 - `extract()` must search the list – $O(n)$

- Maintain as ordered list
 - `insert()` must search the list – $O(n)$
 - `extract()` gets element at front – $O(1)$

- In either case, $O(n^2)$ to process n elements

Can we do better?
Important Special Case

- Fixed number of priority levels 0,...,p – 1
- FIFO within each level
- Example: airline check-in

- `insert()` – insert in appropriate queue – O(1)
- `extract()` – must find a nonempty queue – O(p)
Heaps

• A heap is a concrete data structure that can be used to implement priority queues

• Gives better complexity than either ordered or unordered list implementation:
 - \texttt{insert}(): \(O(\log n)\)
 - \texttt{extract}(): \(O(\log n)\)

• \(O(n \log n)\) to process \(n\) elements

• Do not confuse with \textit{heap memory}, where the Java virtual machine allocates space for objects – different usage of the word heap
Heaps

- Binary tree with data at each node
- Satisfies the *Heap Order Invariant*:

 The least (highest priority) element of any subtree is found at the root of that subtree

- Size of the heap is “fixed” at n. (But can usually double n if heap fills up)
Heaps

Least element in any subtree is always found at the root of that subtree

Note: 19, 20 < 35: we can often find smaller elements deeper in the tree!
Examples of Heaps

• Ages of people in family tree
 – parent is always older than children, but you can have an uncle who is younger than you

• Salaries of employees of a company
 – bosses generally make more than subordinates, but a VP in one subdivision may make less than a Project Supervisor in a different subdivision
Balanced Heaps

These add two restrictions:

1. Any node of depth $< d - 1$ has exactly 2 children, where d is the height of the tree, implies that any two maximal paths (path from a root to a leaf) are of length d or $d - 1$, and the tree has at least 2^d nodes

• All maximal paths of length d are to the left of those of length $d - 1$
Example of a Balanced Heap

d = 3
Elements of the heap are stored in the array in order, going across each level from left to right, top to bottom.

The children of the node at array index n are found at $2n + 1$ and $2n + 2$.

The parent of node n is found at $(n - 1)/2$.

Store in an ArrayList or Vector.
Store in an ArrayList or Vector

children of node n are found at $2n + 1$ and $2n + 2$
Store in an ArrayList or Vector

children of node n are found at $2n + 1$ and $2n + 2$
insert()

• Put the new element at the end of the array

• If this violates heap order because it is smaller than its parent, swap it with its parent

• Continue swapping it up until it finds its rightful place

• The heap invariant is maintained!
insert()

• Time is $O(\log n)$, since the tree is balanced
 – size of tree is exponential as a function of depth
 – depth of tree is logarithmic as a function of size
class PriorityQueue<E> extends java.util.Vector<E> {

 public void insert(E obj) {
 super.add(obj); //add new element to end of array
 rotateUp(size() - 1);
 }

 private void rotateUp(int index) {
 if (index == 0) return;
 int parent = (index - 1)/2;
 if (elementAt(parent).compareTo(elementAt(index)) <= 0) {
 return;
 }
 swap(index, parent);
 rotateUp(parent);
 }
}
extract()

• Remove the least element – it is at the root
• This leaves a hole at the root – fill it in with the last element of the array
• If this violates heap order because the root element is too big, swap it down with the smaller of its children
• Continue swapping it down until it finds its rightful place
• The heap invariant is maintained!
extract()

- Time is $O(\log n)$, since the tree is balanced
public E extract() {
 if (size() == 0) return null;
 E temp = elementAt(0);
 setElementAt(elementAt(size() - 1), 0);
 setSize(size() - 1);
 rotateDown(0);
 return temp;
}

private void rotateDown(int index) {
 int child = 2*(index + 1); // right child
 if (child >= size())
 child -= 1;
 if (child >= size()) return;
 if (elementAt(index).compareTo(elementAt(child)) <= 0)
 return;
 swap(index, child);
 rotateDown(child);
}
HeapSort

Given a `Comparable[]` array of length n,

- Put all n elements into a heap – $O(n \log n)$
- Repeatedly get the min – $O(n \log n)$

```java
public static void heapSort(Comparable[] a) {
    PriorityQueue<Comparable> pq = new PriorityQueue<>(a);
    for (int i = 0; i < a.length; i++) {
        a[i] = pq.extract();
    }
}
```
Example: Probabilistic model of bank-customer arrival times and transaction times, how many tellers are needed?

- Assume we have a way to generate random inter-arrival times
- Assume we have a way to generate transaction times
- Can simulate the bank to get some idea of how long customers must wait

Time-Driven Simulation
- Check at each *tick* to see if any event occurs

Event-Driven Simulation
- Advance clock to next event, skipping intervening *ticks*
- This uses a PQ!