STANDARD ADTS

Lecture 17
CS2110 – Spring 2013
Abstract Data Types (ADTs)

- A method for achieving abstraction for data structures and algorithms
- ADT = model + operations
- Describes what each operation does, but not how it does it
- An ADT is independent of its implementation

- In Java, an interface corresponds well to an ADT
 - The interface describes the operations, but says nothing at all about how they are implemented
- Example: Stack interface/ADT

```java
public interface Stack {
    public void push(Object x);
    public Object pop();
    public Object peek();
    public boolean isEmpty();
    public void clear();
}
```
Queues & Priority Queues

- **ADT Queue**
 - Operations:
 - void add(Object x);
 - Object poll();
 - Object peek();
 - boolean isEmpty();
 - void clear();
 - Where used:
 - Simple job scheduler (e.g., print queue)
 - Wide use within other algorithms

- **ADT PriorityQueue**
 - Operations:
 - void insert(Object x);
 - Object getMax();
 - Object peekAtMax();
 - boolean isEmpty();
 - void clear();
 - Where used:
 - Job scheduler for OS
 - Event-driven simulation
 - Can be used for sorting
 - Wide use within other algorithms

A (basic) queue is “first in, first out”. A priority queue ranks objects: getMax() returns the “largest” according to the comparator interface.
Sets

- **ADT Set**
 - Operations:
    ```java
    void insert(Object element);
    boolean contains(Object element);
    void remove(Object element);
    boolean isEmpty();
    void clear();
    for(Object o: mySet) { ... }
    ```

- **Where used:**
 - Wide use within other algorithms

- **Note:** no duplicates allowed
 - A “set” with duplicates is sometimes called a *multiset* or *bag*

 A set makes no promises about ordering, but you can still iterate over it.
Dictionaries

- ADT Dictionary (aka Map)
 - Operations:
 - void insert(Object key, Object value);
 - void update(Object key, Object value);
 - Object find(Object key);
 - void remove(Object key);
 - boolean isEmpty();
 - void clear();

- Think of: key = word; value = definition

- Where used:
 - Symbol tables
 - Wide use within other algorithms

A HashMap is a particular implementation of the Map interface
These are *implementation* “building blocks” that are often used to build more-complicated data structures

- Arrays
- Linked Lists
 - Singly linked
 - Doubly linked
- Binary Trees
- Graphs
 - Adjacency matrix
 - Adjacency list
Given that we want to support some interface, the designer still faces a choice:

- What will be the best way to implement this interface for my expected type of use?
- Choice of implementation can reflect many considerations.

Major factors we think about

- Speed for typical use case
- Storage space required
Array Implementation of Stack

```java
class ArrayStack implements Stack {

    private Object[] array; //Array that holds the Stack
    private int index = 0; //First empty slot in Stack

    public ArrayStack(int maxSize) {
        array = new Object[maxSize];
    }

    public void push(Object x) { array[index++] = x; }
    public Object pop() { return array[--index]; }
    public Object peek() { return array[index - 1]; }
    public boolean isEmpty() { return index == 0; }
    public void clear() { index = 0; }
}
```

Question: What can go wrong?

.... What if maxSize is too small?
Linked List Implementation of Stack

class ListStack implements Stack {
 private Node head = null; // Head of list that
 // holds the Stack

 public void push(Object x) { head = new Node(x, head); }
 public Object pop() {
 Node temp = head;
 head = head.next;
 return temp.data;
 }
 public Object peek() { return head.data; }
 public boolean isEmpty() { return head == null; }
 public void clear() { head = null; }
}

O(1) worst-case time for each operation (but constant is larger)

Note that array implementation can overflow, but the linked list version cannot
Possible implementations

- **Recall:** operations are `add`, `poll`, `peek`, ...

 - **For linked-list**
 - All operations are $O(1)$

 - **For array with head at A[0]**
 - `poll()` becomes expensive
 - Other ops are $O(1)$
 - Can overflow

 - **For array with wraparound**
 - All operations are $O(1)$
 - Can overflow
A Queue From 2 Stacks

- Add pushes onto stack A
- Poll pops from stack B
- If B is empty, move all elements from stack A to stack B
- Some individual operations are costly, but still $O(1)$ time per operations over the long run
Dealing with Overflow

- For array implementations of stacks and queues, use *table doubling*
- Check for overflow with each insert op
- If table will overflow,
 - Allocate a new table twice the size
 - Copy everything over
- The operations that cause overflow are expensive, but still constant time per operation over the long run (proof later)
Goal: Design a Dictionary (aka Map)

- **Operations**
 - void insert(key, value)
 - void update(key, value)
 - Object find(key)
 - void remove(key)
 - boolean isEmpty()
 - void clear()

Array implementation: Using an array of (key,value) pairs

<table>
<thead>
<tr>
<th>Operation</th>
<th>Unsorted</th>
<th>Sorted</th>
</tr>
</thead>
<tbody>
<tr>
<td>insert</td>
<td>O(1)</td>
<td>O(n)</td>
</tr>
<tr>
<td>update</td>
<td>O(n)</td>
<td>O(log n)</td>
</tr>
<tr>
<td>find</td>
<td>O(n)</td>
<td>O(log n)</td>
</tr>
<tr>
<td>remove</td>
<td>O(n)</td>
<td>O(n)</td>
</tr>
</tbody>
</table>

n is the number of items currently held in the dictionary
Idea: compute an array index via a *hash function* h

- U is the universe of keys
- $h: U \rightarrow [0, \ldots, m-1]$ where $m = \text{hash table size}$
- Usually $|U|$ is much bigger than m, so *collisions* are possible (two elements with the same hash code)

- h should
 - be easy to compute
 - avoid collisions
 - have roughly equal probability for each table position

Typical situation:
$U = \text{all legal identifiers}$

Typical hash function:
h converts each letter to a number, then compute a function of these numbers

Best hash functions are highly random
This is connected to cryptography
We’ll return to this in a few minutes
A Hashing Example

- Suppose each word below has the following hashCode

<table>
<thead>
<tr>
<th>Word</th>
<th>Hash Code</th>
</tr>
</thead>
<tbody>
<tr>
<td>jan</td>
<td>7</td>
</tr>
<tr>
<td>feb</td>
<td>0</td>
</tr>
<tr>
<td>mar</td>
<td>5</td>
</tr>
<tr>
<td>apr</td>
<td>2</td>
</tr>
<tr>
<td>may</td>
<td>4</td>
</tr>
<tr>
<td>jun</td>
<td>7</td>
</tr>
<tr>
<td>jul</td>
<td>3</td>
</tr>
<tr>
<td>aug</td>
<td>7</td>
</tr>
<tr>
<td>sep</td>
<td>2</td>
</tr>
<tr>
<td>oct</td>
<td>5</td>
</tr>
</tbody>
</table>

- How do we resolve collisions?
 - use chaining: each table position is the head of a list
 - for any particular problem, this might work terribly

- In practice, using a good hash function, we can assume each position is equally likely
Analysis for Hashing with Chaining

- Analyzed in terms of load factor $\lambda = \frac{n}{m} = \frac{\text{(items in table)}}{\text{(table size)}}$
- We count the expected number of probes (key comparisons)
- Goal: Determine expected number of probes for an unsuccessful search
 - Expected number of probes for an unsuccessful search = average number of items per table position = $\frac{n}{m} = \lambda$
 - Expected number of probes for a successful search = $1 + \lambda = O(\lambda)$
- Worst case is $O(n)$
Table Doubling

- We know each operation takes time $O(\lambda)$ where $\lambda = n/m$

- So it gets worse as n gets large relative to m

- **Table Doubling:**
 - Set a bound for λ (call it λ_0)
 - Whenever λ reaches this bound:
 - Create a new table twice as big
 - Then rehash all the data
 - As before, operations *usually* take time $O(1)$
 - But sometimes we copy the whole table
Analysis of Table Doubling

Suppose we reach a state with n items in a table of size m and that we have just completed a table doubling

<table>
<thead>
<tr>
<th>Copying Work</th>
</tr>
</thead>
<tbody>
<tr>
<td>Everything has just been copied</td>
</tr>
<tr>
<td>n inserts</td>
</tr>
<tr>
<td>Half were copied previously</td>
</tr>
<tr>
<td>n/2 inserts</td>
</tr>
<tr>
<td>Half of those were copied previously</td>
</tr>
<tr>
<td>n/4 inserts</td>
</tr>
<tr>
<td>...</td>
</tr>
<tr>
<td>...</td>
</tr>
<tr>
<td>Total work</td>
</tr>
<tr>
<td>n + n/2 + n/4 + … = 2n</td>
</tr>
</tbody>
</table>
Analysis of Table Doubling, Cont’d

- Total number of insert operations needed to reach current table = copying work + initial insertions of items = 2n + n = 3n inserts

- Each insert takes expected time $O(\lambda_0)$ or $O(1)$, so total expected time to build entire table is $O(n)$

- Thus, expected time per operation is $O(1)$

- Disadvantages of table doubling:
 - Worst-case insertion time of $O(n)$ is definitely achieved (but rarely)
 - Thus, not appropriate for time critical operations
Concept: “hash” codes

- Definition: a hash code is the output of a function that takes some input and maps it to a pseudo-random number (a hash)
 - Input could be a big object like a string or an Animal or some other complex thing
 - Same input always gives same out
 - Idea is that hashCode for distinct objects will have a very low likelihood of collisions
- Used to create index data structures for finding an object given its hash code
Java Hash Functions

- Most Java classes implement the `hashCode()` method
- `hashCode()` returns an int
- Java’s `HashMap` class uses
 \[h(X) = X.hashCode() \mod m \]
- `h(X)` in detail:
 - `int hash = X.hashCode();`
 - `int index = (hash & 0x7FFFFFFF) \% m;`

- What `hashCode()` returns:
 - Integer:
 - uses the int value
 - Float:
 - converts to a bit representation and treats it as an int
 - Short Strings:
 - `37*previous + value of next character`
 - Long Strings:
 - sample of 8 characters; `39*previous + next value`
hashCode() Requirements

- Contract for `hashCode()` method:
 - Whenever it is invoked in the same object, it must return the same result.
 - Two objects that are equal (in the sense of `.equals(...)`) must have the same hash code.
 - Two objects that are not equal should return different hash codes, but are not required to do so (i.e., collisions are allowed).
Hashtables in Java

- `java.util.HashMap`
- `java.util.HashSet`
- `java.util.Hashtable`

- Use chaining

- Initial (default) size = 101

- Load factor = \(\frac{1}{0} = 0.75 \)

- Uses table doubling (\(2 \times \text{previous} + 1 \))

 - A node in each chain looks like this:

    ```
    hashCode | key | value | next
    ------------
    original hashCode (before mod m)
    Allows faster rehashing and (possibly) faster key comparison
    ```
Linear & Quadratic Probing

- These are techniques in which all data is stored directly within the hash table array

Linear Probing
- Probe at \(h(X) \), then at
 - \(h(X) + 1 \)
 - \(h(X) + 2 \)
 - ...
 - \(h(X) + i \)
- Leads to *primary clustering*
 - Long sequences of filled cells

- Quadratic Probing
 - Similar to Linear Probing in that data is stored within the table
 - Probe at \(h(X) \), then at
 - \(h(X)+1 \)
 - \(h(X)+4 \)
 - \(h(X)+9 \)
 - ...
 - \(h(X) + i^2 \)
 - Works well when
 - \(\lfloor \frac{i}{n} \rfloor < 0.5 \)
 - Table size is prime
Universal Hashing

- In doubt, choose a hash function at random from a large parameterized family of hash functions (e.g., $h(x) = ax + b$, where a and b are chosen at random)
- With high probability, it will be just as good as any custom-designed hash function you dream up
Dictionary Implementations

- **Ordered Array**
 - Better than unordered array because Binary Search can be used

- **Unordered Linked List**
 - Ordering doesn’t help

- **Hashtables**
 - $O(1)$ expected time for Dictionary operations
Aside: Comparators

- When implementing a comparator interface you normally must
 - Override `compareTo()` method
 - Override `hashCode()`
 - Override `equals()`

- Easy to forget and if you make that mistake your code will be very buggy
We mentioned that the hash codes of two equal objects must be equal — this is necessary for hashtable-based data structures such as HashMap and HashSet to work correctly.

In Java, this means if you override \texttt{Object.equals()}, you had better also override \texttt{Object.hashCode()}

But how???
class Identifier {
 String name;
 String type;

 public boolean equals(Object obj) {
 if (obj == null) return false;
 Identifier id;
 try {
 id = (Identifier)obj;
 } catch (ClassCastException cce) {
 return false;
 }
 return name.equals(id.name) && type.equals(id.type);
 }
}
class Identifier {
 String name;
 String type;

 public boolean equals(Object obj) {
 if (obj == null) return false;
 Identifier id;
 try {
 id = (Identifier)obj;
 } catch (ClassCastException cce) {
 return false;
 }
 return name.equals(id.name) && type.equals(id.type);
 }

 public int hashCode() {
 return 37 * name.hashCode() + 113 * type.hashCode() + 42;
 }
}
class TreeNode {
 TreeNode left, right;
 String datum;

 public boolean equals(Object obj) {
 if (obj == null || !(obj instanceof TreeNode)) return false;
 TreeNode t = (TreeNode)obj;
 boolean lEq = (left != null)?
 left.equals(t.left) : t.left == null;
 boolean rEq = (right != null)?
 right.equals(t.right) : t.right == null;
 return datum.equals(t.datum) && lEq && rEq;
 }
}
class TreeNode {
 TreeNode left, right;
 String datum;

 public boolean equals(Object obj) {
 if (obj == null || !(obj instanceof TreeNode)) return false;
 TreeNode t = (TreeNode)obj;
 boolean lEq = (left != null)? left.equals(t.left) : t.left == null;
 boolean rEq = (right != null)? right.equals(t.right) : t.right == null;
 return datum.equals(t.datum) && lEq && rEq;
 }

 public int hashCode() {
 int lHC = (left != null)? left.hashCode() : 298;
 int rHC = (right != null)? right.hashCode() : 377;
 return 37 * datum.hashCode() + 611 * lHC - 43 * rHC;
 }
}
For large objects we often compute an MD5 hash

- MD5 is the fifth of a series of standard “message digest” functions
- They are fast to compute (like an XOR over the bytes of the object)
- But they also use a cryptographic key: without the key you can’t guess what the MD5 hashcode will be
 - For example key could be a random number you pick when your program is launched
 - Or it could be a password

- With a password key, an MD5 hash is a “proof of authenticity”
 - If object is tampered with, the hashcode will reveal it!