Abstract Data Types (ADTs)

- A method for achieving abstraction for data structures and algorithms
- The interface describes the operations, but says nothing at all about how they are implemented
- Example: Stack interface/ADT
  ```java
  public interface Stack {
      public void push(Object x);
      public Object pop();
      public Object peek();
      public boolean isEmpty();
      public void clear();
  }
  ```

Queues & Priority Queues

- ADT Queue
 - Operations:
 - void add(Object x);
 - Object poll();
 - Object peek();
 - boolean isEmpty();
 - void clear();
 - Where used:
 - Simple job scheduler (e.g., print queue)
 - Wide use within other algorithms

A basic queue is “first in, first out”. A priority queue ranks objects; getMax() returns the “largest” according to the comparator interface.

Sets

- ADT Set
 - Operations:
 - void insert(Object element);
 - boolean contains(Object element);
 - void remove(Object element);
 - boolean isEmpty();
 - void clear();
 - Where used:
 - Symbol tables
 - Wide use within other algorithms
 - Note: no duplicates allowed
 - A “set” with duplicates is sometimes called a multiset or bag
 - A set makes no promises about ordering, but you can still iterate over it.

Dictionaries

- ADT Dictionary (aka Map)
 - Operations:
 - void insert(Object key, Object value);
 - void update(Object key, Object value);
 - Object find(Object key);
 - void remove(Object key);
 - boolean isEmpty();
 - void clear();
 - Think of: key = word; value = definition
 - Where used:
 - Symbol tables
 - Wide use within other algorithms

A HashMap is a particular implementation of the Map interface.

Data Structure Building Blocks

- These are implementation “building blocks” that are often used to build more-complicated data structures
 - Arrays
 - Linked Lists
 - Singly linked
 - Doubly linked
 - Binary Trees
 - Graphs
 - Adjacency matrix
 - Adjacency list
From interface to implementation

- Given that we want to support some interface, the designer still faces a choice
 - What will be the best way to implement this interface for my expected type of use?
 - Choice of implementation can reflect many considerations

- Major factors we think about
 - Speed for typical use case
 - Storage space required

Array Implementation of Stack

```java
class ArrayStack implements Stack {
    private Object[] array; //Array that holds the Stack
    private int index = 0; //First empty slot in Stack

    public ArrayStack(int maxSize) {
        array = new Object[maxSize];
    }

    public void push(Object x) {
        array[index++] = x;
    }

    public Object pop() {
        return array[--index];
    }

    public Object peek() {
        return array[index - 1];
    }

    public boolean isEmpty() {
        return index == 0;
    }

    public void clear() {
        index = 0;
    }
}
```

Question: What can go wrong?

.... What if maxSize is too small?

Linked List Implementation of Stack

```java
class ListStack implements Stack {
    private Node head = null; //Head of list that holds the Stack

    public void push(Object x) {
        head = new Node(x, head);
    }

    public Object pop() {
        Node temp = head;
        head = head.next;
        return temp.data;
    }

    public Object peek() {
        return head.data;
    }

    public boolean isEmpty() {
        return head == null;
    }

    public void clear() {
        head = null;
    }
}
```

Note that array implementation can overflow, but the linked list version cannot

Queue Implementations

- Possible implementations
 - Recalling: operations are add, poll, peek...
 - For linked list
 - All operations are O(1)
 - For array with head at A[0]
 - poll takes time O(n)
 - Other ops are O(1)
 - Can overflow
 - For array with wraparound
 - All operations are O(1)
 - Can overflow

A Queue From 2 Stacks

- Add pushes onto stack A
- Poll pops from stack B
- If B is empty, move all elements from stack A to stack B
- Some individual operations are costly, but still O(1) time per operations over the long run

Dealing with Overflow

- For array implementations of stacks and queues, use table doubling
- Check for overflow with each insert op
- If table will overflow,
 - Allocate a new table twice the size
 - Copy everything over
- The operations that cause overflow are expensive, but still constant time per operation over the long run (proof later)
Goal: Design a Dictionary (aka Map)

- Operations
 - void insert(key, value)
 - void update(key, value)
 - Object find(key)
 - void remove(key)
 - boolean isEmpty()
 - void clear()

Array implementation: Using an array of (key, value) pairs

<table>
<thead>
<tr>
<th>Operation</th>
<th>Unsorted Insert</th>
<th>Sorted Insert</th>
<th>Unsorted Update</th>
<th>Sorted Update</th>
<th>Unsorted Find</th>
<th>Sorted Find</th>
<th>Unsorted Remove</th>
<th>Sorted Remove</th>
<th>Unsorted isEmpty</th>
<th>Sorted isEmpty</th>
</tr>
</thead>
<tbody>
<tr>
<td>void insert</td>
<td>O(1)</td>
<td>O(n)</td>
<td>O(n)</td>
<td>O(log n)</td>
<td>O(n)</td>
<td>O(log n)</td>
<td>O(n)</td>
<td>O(n)</td>
<td>True</td>
<td>False</td>
</tr>
<tr>
<td>void update</td>
<td>O(n)</td>
<td>O(log n)</td>
<td>O(n)</td>
<td>O(log n)</td>
<td>O(n)</td>
<td>O(log n)</td>
<td>O(n)</td>
<td>O(n)</td>
<td>True</td>
<td>False</td>
</tr>
<tr>
<td>Object find</td>
<td>O(n)</td>
<td>O(log n)</td>
<td>O(n)</td>
<td>O(log n)</td>
<td>O(n)</td>
<td>O(log n)</td>
<td>O(n)</td>
<td>O(n)</td>
<td>True</td>
<td>False</td>
</tr>
<tr>
<td>void remove</td>
<td>O(n)</td>
<td>O(n)</td>
<td>O(n)</td>
<td>O(n)</td>
<td>False</td>
<td>True</td>
<td>O(n)</td>
<td>O(n)</td>
<td>True</td>
<td>False</td>
</tr>
<tr>
<td>boolean isEmpty()</td>
<td>O(n)</td>
<td>O(n)</td>
<td>O(n)</td>
<td>O(n)</td>
<td>False</td>
<td>True</td>
<td>O(n)</td>
<td>O(n)</td>
<td>True</td>
<td>False</td>
</tr>
<tr>
<td>void clear()</td>
<td>O(n)</td>
<td>O(n)</td>
<td>O(n)</td>
<td>O(n)</td>
<td>False</td>
<td>True</td>
<td>O(n)</td>
<td>O(n)</td>
<td>True</td>
<td>False</td>
</tr>
</tbody>
</table>

n is the number of items currently held in the dictionary

Hashing

- Idea: compute an array index via a hash function \(h \)
 - \(U \) is the universe of keys
 - \(h: U \rightarrow \{0, \ldots, m-1\} \)

Typical situation:
- \(U \) = all legal identifiers
- Typical hash function:
 - \(h \) converts each letter to a number, then compute a function of these numbers

Best hash functions are highly random
- This is connected to cryptography
- We’ll return to this in a few minutes

A Hashing Example

- Suppose each word below has the following hash code

<table>
<thead>
<tr>
<th>Hash Code</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>jan 7</td>
<td></td>
</tr>
<tr>
<td>mar 5</td>
<td></td>
</tr>
<tr>
<td>apr 2</td>
<td></td>
</tr>
<tr>
<td>may 4</td>
<td></td>
</tr>
<tr>
<td>jun 7</td>
<td></td>
</tr>
<tr>
<td>jul 3</td>
<td></td>
</tr>
<tr>
<td>aug 7</td>
<td></td>
</tr>
<tr>
<td>sep 2</td>
<td></td>
</tr>
<tr>
<td>oct 5</td>
<td></td>
</tr>
</tbody>
</table>

- How do we resolve collisions?
 - Use chaining: each table position is the head of a list
 - For any particular problem, this might work terribly

- In practice, using a good hash function, we can assume each position is equally likely

Analysis for Hashing with Chaining

- Analyzed in terms of load factor \(\lambda = n/m \)
 - (items in table)/(table size)
 - Expected number of probes for an unsuccessful search = average number of items per table position = \(n/m = \lambda \)
 - Expected number of probes for a successful search = \(1 + \lambda \) = \(O(\lambda) \)

- We count the expected number of probes (key comparisons)
 - Goal: Determine expected number of probes for an unsuccessful search:
 - Worst case is \(O(n) \)

Table Doubling

- We know each operation takes time \(O(\lambda) \) where \(\lambda = n/m \)
 - So it gets worse as \(n \) gets large relative to \(m \)

- Table Doubling:
 - Set a bound for \(\lambda \) (call it \(\lambda_0 \))
 - Whenever \(\lambda \) reaches this bound:
 - Create a new table twice as big
 - Then rehash all the data
 - As before, operations usually take time \(O(1) \)
 - But sometimes we copy the whole table

Analysis of Table Doubling

- Suppose we reach a state with \(n \) items in a table of size \(m \) and that we have just completed a table doubling

<table>
<thead>
<tr>
<th>Copying Work</th>
<th>Table Doubling</th>
</tr>
</thead>
<tbody>
<tr>
<td>n inserts</td>
<td>n + n/2 + n/4 + \ldots = 2n</td>
</tr>
<tr>
<td>n/2 inserts</td>
<td></td>
</tr>
<tr>
<td>n/4 inserts</td>
<td></td>
</tr>
<tr>
<td>\ldots</td>
<td></td>
</tr>
<tr>
<td>Total work</td>
<td></td>
</tr>
</tbody>
</table>
Analysis of Table Doubling, Cont’d

- Total number of insert operations needed to reach current table = copying work + initial insertions of items
 - $2n + n = 3n$ inserts
- Each insert takes expected time $O(\lambda)$ or $O(1)$, so total expected time to build entire table is $O(n)$
- Thus, expected time per operation is $O(1)$

Disadvantages of table doubling:

- Worst-case insertion time of $O(n)$ is definitely achieved (but rarely)
- Thus, not appropriate for time critical operations

Concept: “hash” codes

- Definition: a hash code is the output of a function that takes some input and maps it to a pseudo-random number (a hash)
- Input could be a big object like a string or an Animal or some other complex thing
- Same input always gives same out
- Idea is that hashCode for distinct objects will have a very low likelihood of collisions
- Used to create index data structures for finding an object given its hash code

Java Hash Functions

- Most Java classes implement the `hashCode()` method
- `hashCode()` returns an `int`
- Java’s `HashMap` class uses $h(X) = X.hashCode() \mod m$
- `h(X)` in detail:
 - `int hash = X.hashCode();`
 - `int index = (hash & 0x7FFFFFFF) % m;`

- What `hashCode()` returns:
 - `int`: uses the int value
 - `Float`: converts to a bit representation and treats it as an int
 - `Short Strings`: 37*previous + value of next character
 - `Long Strings`: sample of 8 characters; 39*previous + next value

HashCode() Requirements

- Contract for `hashCode()` method:
 - Whenever it is invoked in the same object, it must return the same result
 - Two objects that are equal (in the sense of `.equals(...)`) must have the same hash code
 - Two objects that are not equal should return different hash codes, but are not required to do so (i.e., collisions are allowed)

Hashtables in Java

- `java.util.HashMap`
- `java.util.HashSet`
- `java.util.Hashtable`

- Use chaining
 - Initial (default) size = 101
 - Load factor = 0.75
 - Uses table doubling ($2^{*}previous+1$)

Linear & Quadratic Probing

- These are techniques in which all data is stored directly within the hash table array
- **Linear Probing**
 - Probe at $h(X)$, then at $h(X)+1$, $h(X)+2$, ..., $h(X)+i$, $h(X)+i^2$
 - Leads to primary clustering
 - Long sequences of filled cells
- **Quadratic Probing**
 - Similar to Linear Probing in that data is stored within the table
 - Probe at $h(X)$, then at $h(X)+1$, $h(X)+4$, $h(X)+9$, ..., $h(X)+i^2$
 - Works well when $i < 0.5$
 - Table size is prime
Universal Hashing

- In doubt, choose a hash function at random from a large parameterized family of hash functions (e.g., \(h(x) = ax + b \), where \(a \) and \(b \) are chosen at random)
 - With high probability, it will be just as good as any custom-designed hash function you dream up

Dictionary Implementations

- Ordered Array
 - Better than unordered array because Binary Search can be used
- Unordered Linked List
 - Ordering doesn’t help
- Hash tables
 - \(O(1) \) expected time for Dictionary operations

Aside: Comparators

- When implementing a comparator interface you normally must
 - Override compareTo() method
 - Override hashCode()
 - Override equals()

- Easy to forget and if you make that mistake your code will be very buggy

hashCode() and equals()

- We mentioned that the hash codes of two equal objects must be equal — this is necessary for hashtable-based data structures such as HashMap and HashSet to work correctly

- In Java, this means if you override Object.equals(), you had better also override Object.hashCode()

- But how???

```java
class Identifier {
    String name;
    String type;
    public boolean equals(Object obj) {
        if (obj == null) return false;
        Identifier id;
        try {
            id = (Identifier)obj;
        } catch (ClassCastException cce) {
            return false;
        }
        return name.equals(id.name) && type.equals(id.type);
    }
    public int hashCode() {
        return 37 * name.hashCode() + 113 * type.hashCode() + 42;
    }
}
```
Professional quality hash codes?

- For large objects we often compute an MD5 hash
 - MD5 is the fifth of a series of standard “message digest” functions
 - They are fast to compute (like an XOR over the bytes of the object)
 - But they also use a cryptographic key; without the key you can’t guess what the MD5 hashcode will be
 - For example key could be a random number you pick when your program is launched
 - Or it could be a password
 - With a password key, an MD5 hash is a “proof of authenticity”
 - If object is tampered with, the hashcode will reveal it!