SEARCHING, SORTING, AND ASYMPTOTIC COMPLEXITY
What Makes a Good Algorithm?

- Suppose you have two possible algorithms or data structures that basically do the same thing; which is better?

- Well... what do we mean by better?
 - Faster?
 - Less space?
 - Easier to code?
 - Easier to maintain?
 - Required for homework?

- How do we measure time and space for an algorithm?
Sample Problem: Searching

- Determine if sorted array `a` contains integer `v`
- First solution: Linear Search (check each element)

```java
/** return true iff v is in a */
static boolean find(int[] a, int v) {
    for (int i = 0; i < a.length; i++) {
        if (a[i] == v) return true;
    }
    return false;
}
```

```java
static boolean find(int[] a, int v) {
    for (int x : a) {
        if (x == v) return true;
    }
    return false;
}
```
Sample Problem: Searching

Second solution:
Binary Search

Still returning true iff \(v \) is in \(a \)

Keep true: all occurrences of \(v \) are in \(b[low..high] \)

```java
static boolean find (int[] a, int v) {
    int low= 0;
    int high= a.length - 1;
    while (low <= high) {
        int mid = (low + high)/2;
        if (a[mid] == v) return true;
        if (a[mid] < v) low= mid + 1;
        else high= mid - 1;
    }
    return false;
}
```
Linear Search vs Binary Search

Which one is better?
- Linear: easier to program
- Binary: faster… isn’t it?

How do we measure speed?
- Experiment?
- Proof?
- What inputs do we use?

• Simplifying assumption #1: Use size of input rather than input itself
 - For sample search problem, input size is $n+1$ where n is array size

• Simplifying assumption #2: Count number of “basic steps” rather than computing exact times
One Basic Step = One Time Unit

Basic step:
- Input/output of scalar value
- Access value of scalar variable, array element, or object field
- Assign to variable, array element, or object field
- Do one arithmetic or logical operation
- Method invocation (not counting arg evaluation and execution of method body)

- For conditional: number of basic steps on branch that is executed
- For loop: (number of basic steps in loop body) * (number of iterations)
- For method: number of basic steps in method body (include steps needed to prepare stack-frame)
Is this cheating?
- The runtime is not the same as number of basic steps
- Time per basic step varies depending on computer, compiler, details of code...

Well ... yes, in a way
- But the number of basic steps is proportional to the actual runtime

Which is better?
- n or n^2 time?
- $100n$ or n^2 time?
- $10,000n$ or n^2 time?

As n gets large, multiplicative constants become less important

Simplifying assumption #3: Ignore multiplicative constants
Using Big-O to Hide Constants

- We say \(f(n) \) is order of \(g(n) \) if \(f(n) \) is bounded by a constant times \(g(n) \)
- Notation: \(f(n) \) is \(O(g(n)) \)
- Roughly, \(f(n) \) is \(O(g(n)) \) means that \(f(n) \) grows like \(g(n) \) or slower, to within a constant factor
- "Constant" means fixed and independent of \(n \)

Example: \((n^2 + n) \) is \(O(n^2) \)
- We know \(n \leq n^2 \) for \(n \geq 1 \)
- So \(n^2 + n \leq 2n^2 \) for \(n \geq 1 \)
- So by definition, \(n^2 + n \) is \(O(n^2) \) for \(c=2 \) and \(N=1 \)

Formal definition: \(f(n) \) is \(O(g(n)) \) if there exist constants \(c \) and \(N \) such that for all \(n \geq N \), \(f(n) \leq c \cdot g(n) \)
To prove that $f(n)$ is $O(g(n))$:

- Find N and c such that $f(n) \leq c \cdot g(n)$ for all $n > N$
- Pair (c, N) is a witness pair for proving that $f(n)$ is $O(g(n))$
Big-O Examples

Claim: $100n + \log n$ is $O(n)$

We know $\log n \leq n$ for $n \geq 1$

So $100n + \log n \leq 101n$

for $n \geq 1$

So by definition,

$100n + \log n$ is $O(n)$

for $c = 101$ and $N = 1$

Claim: $\log_B n$ is $O(\log_A n)$

since $\log_B n$ is

$(\log_B A)(\log_A n)$

Question: Which grows faster: n or $\log n$?
Big-O Examples

Let $f(n) = 3n^2 + 6n - 7$
- $f(n)$ is $O(n^2)$
- $f(n)$ is $O(n^3)$
- $f(n)$ is $O(n^4)$
- ...

$g(n) = 4n \log n + 34n - 89$
- $g(n)$ is $O(n \log n)$
- $g(n)$ is $O(n^2)$

$h(n) = 20 \cdot 2^n + 40n$
- $h(n)$ is $O(2^n)$

$a(n) = 34$
- $a(n)$ is $O(1)$

Only the leading term (the term that grows most rapidly) matters.
Consider a computing device that can execute 1000 operations per second; how large a problem can we solve?

<table>
<thead>
<tr>
<th></th>
<th>1 second</th>
<th>1 minute</th>
<th>1 hour</th>
</tr>
</thead>
<tbody>
<tr>
<td>n</td>
<td>1000</td>
<td>60,000</td>
<td>3,600,000</td>
</tr>
<tr>
<td>n log n</td>
<td>140</td>
<td>4893</td>
<td>200,000</td>
</tr>
<tr>
<td>n^2</td>
<td>31</td>
<td>244</td>
<td>1897</td>
</tr>
<tr>
<td>3n^2</td>
<td>18</td>
<td>144</td>
<td>1096</td>
</tr>
<tr>
<td>n^3</td>
<td>10</td>
<td>39</td>
<td>153</td>
</tr>
<tr>
<td>2^n</td>
<td>9</td>
<td>15</td>
<td>21</td>
</tr>
</tbody>
</table>
Commonly Seen Time Bounds

<table>
<thead>
<tr>
<th>Time Bound</th>
<th>Description</th>
<th>Rating</th>
</tr>
</thead>
<tbody>
<tr>
<td>$O(1)$</td>
<td>constant</td>
<td>excellent</td>
</tr>
<tr>
<td>$O(\log n)$</td>
<td>logarithmic</td>
<td>excellent</td>
</tr>
<tr>
<td>$O(n)$</td>
<td>linear</td>
<td>good</td>
</tr>
<tr>
<td>$O(n \log n)$</td>
<td>$n \log n$</td>
<td>pretty good</td>
</tr>
<tr>
<td>$O(n^2)$</td>
<td>quadratic</td>
<td>OK</td>
</tr>
<tr>
<td>$O(n^3)$</td>
<td>cubic</td>
<td>maybe OK</td>
</tr>
<tr>
<td>$O(2^n)$</td>
<td>exponential</td>
<td>too slow</td>
</tr>
</tbody>
</table>
Worst-Case/Expected-Case Bounds

We can’t possibly determine time bounds for all possible inputs of size n.

Simplifying assumption #4:
Determine number of steps for either
- worst-case or
- expected-case

- **Worst-case**
 - Determine how much time is needed for the *worst possible* input of size n

- **Expected-case**
 - Determine how much time is needed *on average* for all inputs of size n
Simplifying Assumptions

Use the *size* of the input rather than the input itself – n

Count the number of “basic steps” rather than computing exact time

Ignore multiplicative constants and small inputs (order-of, big-O)

Determine number of steps for either
- worst-case
- expected-case

These assumptions allow us to analyze algorithms effectively
Worst-Case Analysis of Searching

Linear Search

```java
/** return true iff v is in a */
static boolean find (int[] a, int v) {
    for (int x : a) {
        if (x == v) return true;
    }
    return false;
}

worst-case time: \( O(n) \)
```

Binary Search

```java
static boolean find (int[] a, int v) {
    int low = 0;
    int high = a.length - 1;
    while (low <= high) {
        int mid = (low + high)/2;
        if (a[mid] == v) return true;
        if (a[mid] < v)
            low = mid + 1;
        else   high = mid - 1;
    }
    return false;
}

worst-case time: \( O(\log n) \)
```
Comparison of Algorithms

Linear vs. Binary Search

- **Linear Search**
- **Binary Search**
Comparison of Algorithms

Linear vs. Binary Search

Max Number of Comparisons vs. Number of Items in Array

- Linear Search
- Binary Search
Comparison of Algorithms

Linear vs. Binary Search

Max Number of Comparisons

Number of Items in Array

- Linear Search
- Binary Search
Analysis of Matrix Multiplication

Multiply n-by-n matrices A and B:

Convention, matrix problems measured in terms of n, the number of rows, columns
- Input size is really $2n^2$, not n
- Worst-case time: $O(n^3)$
- Expected-case time: $O(n^3)$

```java
for (i = 0; i < n; i++)
    for (j = 0; j < n; j++)
        c[i][j] = 0;
    for (k = 0; k < n; k++)
        c[i][j] += a[i][k]*b[k][j];
```
Remarks

Once you get the hang of this, you can quickly zero in on what is relevant for determining asymptotic complexity

- Example: you can usually ignore everything that is not in the innermost loop. Why?

Main difficulty:

- Determining runtime for recursive programs
Why Bother with Runtime Analysis?

Computers so fast that we can do whatever we want using simple algorithms and data structures, right?

Not really — data-structure/algorithm improvements can be a very big win

Scenario:
- A runs in n^2 msec
- A' runs in $n^2/10$ msec
- B runs in $10n \log n$ msec

Problem of size $n=10^3$
- A: 10^3 sec \approx 17 minutes
- A': 10^2 sec \approx 1.7 minutes
- B: 10^2 sec \approx 1.7 minutes

Problem of size $n=10^6$
- A: 10^9 sec \approx 30 years
- A': 10^8 sec \approx 3 years
- B: $2 \cdot 10^5$ sec \approx 2 days

1 day $= 86,400$ sec $\approx 10^5$ sec
1,000 days \approx 3 years
Human genome
= 3.5 billion nucleotides
~ 1 Gb

@1 base-pair instruction/sec
- $n^2 \rightarrow 388445$ years
- $n \log n \rightarrow 30.824$ hours
- $n \rightarrow 1$ hour
Limitations of Runtime Analysis

Big-O can hide a very large constant
- Example: selection
- Example: small problems

The specific problem you want to solve may not be the worst case
- Example: Simplex method for linear programming

Your program may not be run often enough to make analysis worthwhile
- Example: one-shot vs. every day
- You may be analyzing and improving the wrong part of the program
- Very common situation
- Should use profiling tools
Asymptotic complexity
- Used to measure of time (or space) required by an algorithm
- Measure of the algorithm, not the problem

Searching a sorted array
- Linear search: $O(n)$ worst-case time
- Binary search: $O(\log n)$ worst-case time

Matrix operations:
- Note: $n =$ number-of-rows = number-of-columns
- Matrix-vector product: $O(n^2)$ worst-case time
- Matrix-matrix multiplication: $O(n^3)$ worst-case time

More later with sorting and graph algorithms