TREES

Lecture 10
CS2110 – Spring 2013
Tree Overview

- **Tree**: recursive data structure (similar to list)
 - Each cell may have zero or more successors (children)
 - Each cell has exactly one predecessor (parent) except the root, which has none
 - All cells are reachable from root

- **Binary tree**: tree in which each cell can have at most two children: a left child and a right child
Tree Terminology

- **M** is the *root* of this tree
- **G** is the *root* of the left subtree of **M**
- **B, H, J, N, and S** are *leaves*
- **N** is the *left child* of **P**; **S** is the *right child*
- **P** is the *parent* of **N**
- **M and G** are *ancestors* of **D**
- **P, N, and S** are *descendants* of **W**
- **Node J** is at *depth* 2 (i.e., *depth* = length of path from root = number of edges)
- **Node W** is at *height* 2 (i.e., *height* = length of longest path to a leaf)
- A collection of several trees is called a *...?*
class TreeCell<T> {
 private T datum;
 private TreeCell<T> left, right;

 public TreeCell(T x) { datum = x; }
 public TreeCell(T x, TreeCell<T> lft, TreeCell<T> rgt) {
 datum = x;
 left = lft;
 right = rgt;
 }
 more methods: getDatum, setDatum, getLeft, setLeft, getRight, setRight
}

... new TreeCell<String>("hello") ...
Binary versus general tree

- In a binary tree each node has exactly two pointers: to the left subtree, and to the right one
 - Of course one or both could be null

- In a general tree a node can have any number of child nodes
 - Very useful in some situations...
 - ... one of which will be our assignments!
Class for General Tree nodes

class GTreeCell {
 private Object datum;
 private GTreeCell left;
 private GTreeCell sibling;

 appropriate getter and setter methods
}

- Parent node points directly only to its leftmost child
- Leftmost child has pointer to next sibling, which points to next sibling, etc.
Applications of Trees

- Most languages (natural and computer) have a recursive, hierarchical structure.

- This structure is *implicit* in ordinary textual representation.

- Recursive structure can be made *explicit* by representing sentences in the language as trees: *Abstract Syntax Trees* (ASTs).

- ASTs are easier to optimize, generate code from, etc. than textual representation.

- A *parser* converts textual representations to AST.
Example

- **Expression grammar:**
 - $E \rightarrow \text{integer}$
 - $E \rightarrow (E + E)$

- **In textual representation**
 - Parentheses show hierarchical structure

- **In tree representation**
 - Hierarchy is explicit in the structure of the tree

<table>
<thead>
<tr>
<th>Text</th>
<th>AST Representation</th>
</tr>
</thead>
<tbody>
<tr>
<td>-34</td>
<td>-34</td>
</tr>
<tr>
<td>(2 + 3)</td>
<td>$+ \quad 2 \quad 3$</td>
</tr>
<tr>
<td>((2+3) + (5+7))</td>
<td>$+ \quad + \quad 2 \quad 3 \quad 5 \quad 7$</td>
</tr>
</tbody>
</table>
Recursion on Trees

- Recursive methods can be written to operate on trees in an obvious way

- Base case
 - empty tree
 - leaf node

- Recursive case
 - solve problem on left and right subtrees
 - put solutions together to get solution for full tree
Searching in a Binary Tree

```java
public static boolean treeSearch(Object x, TreeCell node) {
    if (node == null) return false;
    if (node.datum.equals(x)) return true;
    return treeSearch(x, node.left) ||
           treeSearch(x, node.right);
}
```

- Analog of linear search in lists: given tree and an object, find out if object is stored in tree
- Easy to write recursively, harder to write iteratively
Binary Search Tree (BST)

- If the tree data are ordered – in any subtree,
 - All left descendents of node come before node
 - All right descendents of node come after node
- This makes it much faster to search

```java
public static boolean treeSearch (Object x, TreeCell node) {
    if (node == null) return false;
    if (node.datum.equals(x)) return true;
    if (node.datum.compareTo(x) > 0)
        return treeSearch(x, node.left);
    else return treeSearch(x, node.right);
}
```
Building a BST

- **To insert a new item**
 - Pretend to look for the item
 - Put the new node in the place where you fall off the tree

- **This can be done using either recursion or iteration**

- **Example**
 - Tree uses *alphabetical order*
 - Months appear for insertion in *calendar order*
What Can Go Wrong?

- A BST makes searches very fast, unless...
 - Nodes are inserted in alphabetical order
 - In this case, we’re basically building a linked list (with some extra wasted space for the left fields that aren’t being used)

- BST works great if data arrives in random order
Printing Contents of BST

Because of the ordering rules for a BST, it’s easy to print the items in alphabetical order

- Recursively print everything in the left subtree
- Print the node
- Recursively print everything in the right subtree

```java
/**
 * Show the contents of the BST in alphabetical order.
 */
public void show () {
    show(root);
    System.out.println();
}

private static void show(TreeNode node) {
    if (node == null) return;
    show(node.lchild);
    System.out.print(node.datum + " ");
    show(node.rchild);
}
```
“Walking” over the whole tree is a tree traversal

- This is done often enough that there are standard names

- The previous example is an inorder traversal
 - Process left subtree
 - Process node
 - Process right subtree

- Note: we’re using this for printing, but any kind of processing can be done

- There are other standard kinds of traversals

 - Preorder traversal
 - Process node
 - Process left subtree
 - Process right subtree

 - Postorder traversal
 - Process left subtree
 - Process right subtree
 - Process node

 - Level-order traversal
 - Not recursive
 - Uses a queue
Some Useful Methods

// determine if a node is a leaf
public static boolean isLeaf(TreeCell node) {
 return (node != null) && (node.left == null) && (node.right == null);
}

// compute height of tree using postorder traversal
public static int height(TreeCell node) {
 if (node == null) return -1; // empty tree
 if (isLeaf(node)) return 0;
 return 1 + Math.max(height(node.left), height(node.right));
}

// compute number of nodes using postorder traversal
public static int nNodes(TreeCell node) {
 if (node == null) return 0;
 return 1 + nNodes(node.left) + nNodes(node.right);
}
Useful Facts about Binary Trees

- \(2^d = \) maximum number of nodes at depth \(d\)

- If height of tree is \(h\)
 - Minimum number of nodes in tree = \(h + 1\)
 - Maximum number of nodes in tree = \(2^0 + 2^1 + \ldots + 2^h = 2^{h+1} - 1\)

- Complete binary tree
 - All levels of tree down to a certain depth are completely filled

![Diagram of a binary tree]

- Height 2, minimum number of nodes
- Height 2, maximum number of nodes
Tree with Parent Pointers

- In some applications, it is useful to have trees in which nodes can reference their parents.
- Analog of doubly-linked lists.
Things to Think About

- What if we want to delete data from a BST?
- A BST works great as long as it’s balanced
 - How can we keep it balanced?
Suffix Trees

• Given a string s, a suffix tree for s is a tree such that
 • each edge has a unique label, which is a nonnull substring of s
 • any two edges out of the same node have labels beginning with different characters
 • the labels along any path from the root to a leaf concatenate together to give a suffix of s
 • all suffixes are represented by some path
 • the leaf of the path is labeled with the index of the first character of the suffix in s

• Suffix trees can be constructed in linear time
Suffix Trees

abracadabra$
Suffix Trees

- Useful in string matching algorithms (e.g., longest common substring of 2 strings)
- Most algorithms linear time
- Used in genomics (human genome is ~4GB)
Huffman Trees

Fixed length encoding
197*2 + 63*2 + 40*2 + 26*2 = 652

Huffman encoding
197*1 + 63*2 + 40*3 + 26*3 = 521
Huffman Compression of “Ulysses”

<table>
<thead>
<tr>
<th>Character</th>
<th>Frequency</th>
<th>Code</th>
<th>Length</th>
</tr>
</thead>
<tbody>
<tr>
<td>.</td>
<td>29</td>
<td>00101110</td>
<td>15</td>
</tr>
<tr>
<td>'7'</td>
<td>1</td>
<td>00110111</td>
<td>15</td>
</tr>
<tr>
<td>'/'</td>
<td>1</td>
<td>00101111</td>
<td>15</td>
</tr>
<tr>
<td>'X'</td>
<td>2</td>
<td>01011000</td>
<td>16</td>
</tr>
<tr>
<td>'&.'</td>
<td>3</td>
<td>00100110</td>
<td>18</td>
</tr>
<tr>
<td>'%.'</td>
<td>3</td>
<td>00100101</td>
<td>19</td>
</tr>
<tr>
<td>'+'</td>
<td>2</td>
<td>00101011</td>
<td>19</td>
</tr>
<tr>
<td>'original size'</td>
<td>11904320</td>
<td></td>
<td></td>
</tr>
<tr>
<td>'compressed size'</td>
<td>6822151</td>
<td></td>
<td></td>
</tr>
<tr>
<td>'42.7% compression'</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
BSP Trees

- BSP = Binary Space Partition
- Used to render 3D images composed of polygons
- Each node \(n \) has one polygon \(p \) as data
- Left subtree of \(n \) contains all polygons on one side of \(p \)
- Right subtree of \(n \) contains all polygons on the other side of \(p \)
- Order of traversal determines occlusion!
Tree Summary

- A tree is a recursive data structure
 - Each cell has 0 or more successors (children)
 - Each cell except the root has at exactly one predecessor (parent)
 - All cells are reachable from the root
 - A cell with no children is called a leaf

- Special case: binary tree
 - Binary tree cells have a left and a right child
 - Either or both children can be null

- Trees are useful for exposing the recursive structure of natural language and computer programs