RECURSION

Lecture 6
CS2110 – Spring 2013
Recursion

- Arises in three forms in computer science
 - Recursion as a *mathematical* tool for defining a function in terms of its own value in a simpler case

 - Recursion as a *programming* tool. You’ve seen this previously but we’ll take it to mind-bending extremes (by the end of the class it will seem easy!)

 - Recursion used to prove properties about algorithms. We use the term *induction* for this and will discuss it later.
Recursion as a math technique

- Broadly, recursion is a powerful technique for specifying functions, sets, and programs
- A few recursively-defined functions and programs
 - factorial
 - combinations
 - exponentiation (raising to an integer power)
- Some recursively-defined sets
 - grammars
 - expressions
 - data structures (lists, trees, ...)

Example: Sum the digits in a number

/** return sum of digits in n, given n >= 0 */
public static int sum(int n) {
 if (n < 10) return n;
 // n has at least two digits.
 // return first digit + sum of rest
 return n%10 + sum(n/10);
}

- E.g. sum(87012) = 2+(1+(0+(7+8))) = 18
Example: Is a string a palindrome?

```java
/** = "s is a palindrome" */
public static boolean isPalindrome(String s) {
    if (s.length() <= 1)
        return true;
    // s has at least 2 chars
    int n = s.length() - 1;
    return s.charAt(0) == s.charAt(n) && isPalindrome(s.substring(1, n));
}
```

- isPalindrome(“racecar”) = true
- isPalindrome(“pumpkin”) = false
Count the e’s in a string

```java
/** = "number of times c occurs in s */
public static int countEm(char c, String s) {
    if (s.length() == 0)
        return 0;

    // { s has at least 1 character }
    if (s.charAt(0) != c)
        return countEm(c, s.substring(1));

    // { first character of s is c}
    return 1 + countEm(c, s.substring(1));
}
```

- `countEm('e', "it is easy to see that this has many e’s") = 4`
- `countEm('e', "Mississippi") = 0`
The Factorial Function \((n!\)\)

- Define \(n! = n \cdot (n-1) \cdot (n-2) \cdots 3 \cdot 2 \cdot 1\)

 read: “\(n\) factorial”

 - E.g., \(3! = 3 \cdot 2 \cdot 1 = 6\)

- By convention, \(0! = 1\)

- The function \(\text{int} \to \text{int}\) that gives \(n!\) on input \(n\) is called the *factorial function*
The Factorial Function \((n!\))

- \(n!\) is the number of permutations of \(n\) distinct objects.
 - There is just one permutation of one object. \(1! = 1\)
 - There are two permutations of two objects: \(2! = 2\)
 - \(1\ 2\ 2\ 1\)
 - There are six permutations of three objects: \(3! = 6\)
 - \(1\ 2\ 3\ 1\ 3\ 2\ 2\ 1\ 3\ 2\ 3\ 1\ 3\ 1\ 2\ 3\ 2\ 1\)
- If \(n > 0\), \(n! = n \cdot (n - 1)!\)
Permutations of

Permutations of non-orange blocks

Each permutation of the three non-orange blocks gives four permutations when the orange block is included

- Total number = $4 \cdot 3! = 4 \cdot 6 = 24$
One way to think about the task of permuting the four colored blocks was to start by computing all permutations of three blocks, then finding all ways to add a fourth block.

And this “explains” why the number of permutations turns out to be 4!

Can generalize to prove that the number of permutations of n blocks is n!
A Recursive Program

0! = 1
n! = n \cdot (n-1)!, \ n > 0

static int fact(int n) {
 if (n == 0)
 return 1;
 else
 return n*fact(n-1);
}

Execution of fact(4)

fact(4) \rightarrow 24
fact(3) \rightarrow 6
fact(2) \rightarrow 2
fact(1) \rightarrow 1
fact(0) \rightarrow 1
General Approach to Writing Recursive Functions

1. Try to find a parameter, say \(n \), such that the solution for \(n \) can be obtained by combining solutions to the same problem using smaller values of \(n \) (e.g., \((n-1)\) in our factorial example).

2. Find base case(s) — small values of \(n \) for which you can just write down the solution (e.g., \(0! = 1 \)).

3. Verify that, for any valid value of \(n \), applying the reduction of step 1 repeatedly will ultimately hit one of the base cases.
A cautionary note

- Keep in mind that each instance of your recursive function has its own local variables

- Also, remember that “higher” instances are waiting while “lower” instances run

- Not such a good idea to touch global variables from within recursive functions
 - Legal… but a common source of errors
 - Must have a really clear mental picture of how recursion is performed to get this right!
The Fibonacci Function

- **Mathematical definition:**
 \[
 \begin{align*}
 \text{fib}(0) &= 0 \\
 \text{fib}(1) &= 1 \\
 \text{fib}(n) &= \text{fib}(n - 1) + \text{fib}(n - 2), \quad n \geq 2
 \end{align*}
 \]
 Two base cases!

- **Fibonacci sequence:** 0, 1, 1, 2, 3, 5, 8, 13, …

```java
static int fib(int n) {
    if (n == 0) return 0;
    else if (n == 1) return 1;
    else return fib(n-2) + fib(n-1);
}
```
Recursive Execution

```java
static int fib(int n) {
    if (n == 0) return 0;
    else if (n == 1) return 1;
    else return fib(n-2) + fib(n-1);
}
```

Execution of fib(4):
```
fib(4)
  /   
/     
/fib(2)     fib(3)
 /     
/   
fib(0)     fib(1)
  /   
  /     
  /     
fib(0)     fib(1)
```

fib(1) + fib(2)
One thing to notice

- This way of computing the Fibonacci function is elegant, but inefficient.
- It “recomputes” answers again and again!
- To improve speed, need to save known answers in a table!
 - One entry per answer
 - Such a table is called a *cache*

<table>
<thead>
<tr>
<th>fib(4)</th>
</tr>
</thead>
<tbody>
<tr>
<td>fib(2)</td>
</tr>
<tr>
<td>fib(3)</td>
</tr>
<tr>
<td>fib(0)</td>
</tr>
<tr>
<td>fib(1)</td>
</tr>
<tr>
<td>fib(1)</td>
</tr>
<tr>
<td>fib(2)</td>
</tr>
<tr>
<td>fib(0)</td>
</tr>
<tr>
<td>fib(1)</td>
</tr>
</tbody>
</table>
Memoization is an optimization technique used to speed up computer programs by having function calls avoid repeating the calculation of results for previously processed inputs.

- The first time the function is called, we save result
- The next time, we can look the result up
 - Assumes a “side effect free” function: The function just computes the result, it doesn’t change things
 - If the function depends on anything that changes, must “empty” the saved results list
Adding Memoization to our solution

Before:
```java
static int fib(int n) {
    if (n == 0)
        return 0;
    else if (n == 1)
        return 1;
    else
        return fib(n-2) + fib(n-1);
}
```

After:
```java
static ArrayList<Integer> cached =
    new ArrayList<Integer>();

static int fib(int n) {
    if(n < cached.size())
        return cached.get(n);
    int v;
    if (n == 0)
        v = 0;
    else if (n == 1)
        v = 1;
    else
        v = fib(n-2) + fib(n-1);
    // cached[n] = fib(n). This code makes use of the fact
    // that an ArrayList adds elements to the end of the list
    if(n == cached.size())
        cached.add(v);
    return v;
}
```
Notice the development process

- We started with the idea of recursion
- Created a very simple recursive procedure
- Noticed it will be slow, because it wastefully recomputes the same thing again and again
- So made it a bit more complex but gained a lot of speed in doing so

- This is a common software engineering pattern
Why did it work?

- This cached list “works” because for each value of n, either cached.get(n) is still undefined, or has fib(n).

- Takes advantage of the fact that an ArrayList adds elements at the end, and indexes from 0.

```
cached@BA8900, size=5
```

<p>| | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>3</td>
</tr>
</tbody>
</table>

```
cached.get(0)=0
cached.get(1)=1
... cached.get(n)=fib(n)
```

Property of our code: cached.get(n) accessed after fib(n) computed.
Positive Integer Powers

- \(a^n = a \cdot a \cdot a \cdots a \) (n times)

- Alternate description:
 - \(a^0 = 1 \)
 - \(a^{n+1} = a \cdot a^n \)

```c
static int power(int a, int n) {
    if (n == 0) return 1;
    else return a*power(a,n-1);
}
```
A Smarter Version

- **Power computation:**
 - \(a_0 = 1\)
 - If \(n\) is nonzero and even, \(a_n = (a_n/2)^2\)
 - If \(n\) is odd, \(a_n = a \cdot (a_n/2)^2\)
 - Java note: If \(x\) and \(y\) are integers, “\(x/y\)” returns the integer part of the quotient

- **Example:**
 - \(a_5 = a \cdot (a_5/2)^2 = a \cdot (a_2)^2 = a \cdot ((a_2/2)^2)^2 = a \cdot (a_2)^2\)
 - Note: this requires 3 multiplications rather than 5!
... Example:
\[a_5 = a \cdot \left(a_5/2 \right)^2 = a \cdot (a_2)^2 = a \cdot \left((a_2/2)^2 \right)^2 = a \cdot (a_2)^2 \]
Note: this requires 3 multiplications rather than 5!

What if \(n \) were larger?
- Savings would be more significant

This is much faster than the straightforward computation
- Straightforward computation: \(n \) multiplications
- Smarter computation: \(\log(n) \) multiplications
n = 0: \(a^0 = 1 \)
n nonzero and even: \(a^n = (a^{n/2})^2 \)
n nonzero and odd: \(a^n = a \cdot (a^{n/2})^2 \)

```
static int power(int a, int n) {
    if (n == 0) return 1;
    int halfPower = power(a, n/2);
    if (n%2 == 0) return halfPower*halfPower;
    return halfPower*halfPower*a;
}
```

The method has two parameters and a local variable

Why aren’t these overwritten on recursive calls?
How Java “compiles” recursive code

- **Key idea:**
 - Java uses a stack to remember parameters and local variables across recursive calls
 - Each method invocation gets its own stack frame

- **A stack frame contains storage for**
 - Local variables of method
 - Parameters of method
 - Return info (return address and return value)
 - Perhaps other bookkeeping info
Stacks

Like a stack of dinner plates

- You can push data on top or pop data off the top in a LIFO (last-in-first-out) fashion
- A queue is similar, except it is FIFO (first-in-first-out)

<table>
<thead>
<tr>
<th>top element</th>
<th>2nd element</th>
<th>3rd element</th>
</tr>
</thead>
<tbody>
<tr>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
</tbody>
</table>
| bottom element

stack grows

top-of-stack pointer

- Like a stack of dinner plates
- You can push data on top or pop data off the top in a LIFO (last-in-first-out) fashion
- A queue is similar, except it is FIFO (first-in-first-out)
Stack Frame

- A new stack frame is pushed with each recursive call
- The stack frame is popped when the method returns
 - Leaving a return value (if there is one) on top of the stack

```
Stack Frame

A new stack frame is pushed with each recursive call

The stack frame is popped when the method returns

Leaving a return value (if there is one) on top of the stack
```
Example: power(2, 5)

hP: short for `halfPower`
How Do We Keep Track?

- Many frames may exist, but computation is only occurring in the top frame
 - The ones below it are waiting for results

- The hardware has nice support for this way of implementing function calls, and recursion is just a kind of function call
Recursion is a convenient and powerful way to define functions.

Problems that seem insurmountable can often be solved in a “divide-and-conquer” fashion:
- Reduce a big problem to smaller problems of the same kind, solve the smaller problems
- Recombine the solutions to smaller problems to form solution for big problem

Important application (next lecture): parsing
Extra slides

- For use if we have time for one more example of recursion

- This builds on the ideas in the Fibonacci example
Combinations
(a.k.a. Binomial Coefficients)

- How many ways can you choose r items from a set of n distinct elements? \(\binom{n}{r} \) “n choose r”

\[
\binom{5}{2} = \text{number of 2-element subsets of } \{A,B,C,D,E\}
\]

- 2-element subsets containing A: \(\binom{4}{1} \)
 \[\{A,B\}, \{A,C\}, \{A,D\}, \{A,E\}\]

- Therefore, \(\binom{5}{2} = \binom{4}{1} + \binom{4}{2} \)

- … in perfect form to write a recursive function!
Combinations

\[\binom{n}{r} = \binom{n-1}{r} + \binom{n-1}{r-1}, \quad n > r > 0 \]

\[\binom{n}{n} = 1 \]

\[\binom{n}{0} = 1 \]

Can also show that

\[\binom{n}{r} = \frac{n!}{r!(n-r)!} \]

Pascal’s triangle

\[
\begin{array}{cccccc}
0 & 1 & 0 & 0 & 0 & 0 \\
1 & 1 & 1 & 1 & 1 & 1 \\
2 & 2 & 2 & 2 & 2 & 2 \\
3 & 3 & 3 & 3 & 3 & 3 \\
4 & 4 & 4 & 4 & 4 & 4 \\
\end{array}
\]

\[
\begin{array}{cccccc}
1 & 1 & 1 & 1 & 1 & 1 \\
1 & 2 & 1 & 1 & 1 & 1 \\
1 & 3 & 3 & 3 & 3 & 3 \\
1 & 4 & 6 & 4 & 4 & 4 \\
\end{array}
\]
Combinations are also called *binomial coefficients* because they appear as coefficients in the expansion of the binomial power \((x+y)^n\):

\[
(x + y)^n = \binom{n}{0}x^n + \binom{n}{1}x^{n-1}y + \binom{n}{2}x^{n-2}y^2 + \cdots + \binom{n}{n}y^n
\]

\[
= \sum_{i=0}^{n} \binom{n}{i} x^{n-i}y^i
\]
Combinations Have Two Base Cases

\[
\binom{n}{r} = \binom{n-1}{r} + \binom{n-1}{r-1}, \quad n > r > 0
\]

\[
\binom{n}{n} = 1
\]

\[
\binom{n}{0} = 1
\]

- Coming up with right base cases can be tricky!
- General idea:
 - Determine argument values for which recursive case does not apply
 - Introduce a base case for each one of these
Recursive Program for Combinations

\(\binom{n}{r} = \binom{n-1}{r} + \binom{n-1}{r-1}, \quad n > r > 0 \)

\(\binom{n}{n} = 1 \)

\(\binom{n}{0} = 1 \)

```java
static int combs(int n, int r) {   //assume n>=r>=0
    if (r == 0 || r == n) return 1; //base cases
    else return combs(n-1,r) + combs(n-1,r-1);
}
```
Exercise for the reader (you!)

- Modify our recursive program so that it caches results
- Same idea as for our caching version of the fibonacci series

- Question to ponder: When is it worthwhile to adding caching to a recursive function?
 - Certainly not always…
 - Must think about tradeoffs: space to maintain the cached results vs speedup obtained by having them
Something to think about

- With fib(), it was kind of a trick to arrange that:
 \[\text{cached}[n] = \text{fib}(n) \]

- Caching combinatorial values will force you to store more than just the answer:
 - Create a class called `Triple`
 - Design it to have integer fields \(n, r, v \)
 - Store `Triple` objects into `ArrayList<Triple> cached;`
 - Search `cached` for a saved value matching \(n \) and \(r \)
 - Hint: use a foreach loop