Recursion

Arises in three forms in computer science

- Recursion as a mathematical tool for defining a function in terms of its own value in a simpler case
- Recursion as a programming tool. You've seen this previously but we'll take it to mind-bending extremes (by the end of the class it will seem easy!)
- Recursion used to prove properties about algorithms. We use the term induction for this and will discuss it later.

Recursion as a math technique

- Broadly, recursion is a powerful technique for specifying functions, sets, and programs
- A few recursively-defined functions and programs
 - factorial
 - combinations
 - exponentiation (raising to an integer power)
- Some recursively-defined sets
 - grammars
 - expressions
 - data structures (lists, trees, ...)

Example: Sum the digits in a number

```java
/** return sum of digits in n, given n >= 0 */
public static int sum(int n) {
    if (n < 10) return n;
    // n has at least two digits
    // return first digit + sum of rest
    return n%10 + sum(n/10);
}
```

E.g. \(\text{sum}(87012) = 2 + (1 + (0 + (7 + 8))) = 18 \)

Example: Is a string a palindrome?

```java
/** = "s is a palindrome" */
public static boolean isPalindrome(String s) {
    if (s.length() <= 1)
        return true;
    // s has at least 2 chars
    int n = s.length()-1;
    return s.charAt(0) == s.charAt(n) && isPalindrome(s.substring(1, n));
}
```

Example: Count the e’s in a string

```java
/** = "number of times c occurs in s" */
public static int countEm(char c, String s) {
    if (s.length() == 0)
        return 0;
    // { s has at least 1 character }
    if (s.charAt(0) != c)
        return countEm(c, s.substring(1));
    // { first character of s is c }
    return 1 + countEm(c, s.substring(1));
}
```

- countEm(‘e’, “it is easy to see that this has many e’s”) = 4
- countEm(‘e’, “Mississippi”) = 0
The Factorial Function \((n!)
\\)

- Define \(n! = n \cdot (n-1) \cdot (n-2) \cdots 3 \cdot 2 \cdot 1\)

 read: “n factorial”

 E.g., 3! = 3 \cdot 2 \cdot 1 = 6

- By convention, 0! = 1

- The function \(\mathbb{int} \rightarrow \mathbb{int}\) that gives \(n!\) on input \(n\) is called the **factorial function**

Observation

- One way to think about the task of permuting the four colored blocks was to start by computing all permutations of three blocks, then finding all ways to add a fourth block

 - And this “explains” why the number of permutations turns out to be 4!

 - Can generalize to prove that the number of permutations of \(n\) blocks is \(n!\)

The Factorial Function \((n!)
\\)

- \(n!\) is the number of permutations of \(n\) distinct objects

 - There is just one permutation of one object: \(1! = 1\)

 - There are two permutations of two objects: \(2! = 2\)

 1 2, 2 1

 - There are six permutations of three objects: \(3! = 6\)

 1 2 3, 1 3 2, 2 1 3, 2 3 1, 3 1 2, 3 2 1

 - If \(n > 0\), \(n! = n \cdot (n-1)!\)

A Recursive Program

- \(0! = 1\)

- \(n! = n \cdot (n-1)!\), \(n > 0\)

Execution of fact(4)

\[
\begin{align*}
\text{fact}(4) & \rightarrow 24 \\
\text{fact}(3) & \rightarrow 6 \\
\text{fact}(2) & \rightarrow 2 \\
\text{fact}(1) & \rightarrow 1 \\
\text{fact}(0) & \rightarrow 1
\end{align*}
\]

```
static int fact(int n) {
    if (n == 0)
        return 1;
    else
        return n*fact(n-1);
}
```

Permutations of the four colored blocks

- Each permutation of the three non-orange blocks gives four permutations when the orange block is included

- Total number = \(4 \cdot 3! = 4 \cdot 6 = 24\): \(4!\)

General Approach to Writing Recursive Functions

1. Try to find a parameter, say \(n\), such that the solution for \(n\) can be obtained by combining solutions to the same problem using smaller values of \(n\) (e.g., \((n-1)\) in our factorial example)

2. Find **base case(s)** – small values of \(n\) for which you can just write down the solution (e.g., \(0! = 1\))

3. Verify that, for any valid value of \(n\), applying the reduction of step 1 repeatedly will ultimately hit one of the base cases
A cautionary note

- Keep in mind that each instance of your recursive function has its own local variables.
- Also, remember that “higher” instances are waiting while “lower” instances run.
- Not such a good idea to touch global variables from within recursive functions:
 - Legal... but a common source of errors.
 - Must have a really clear mental picture of how recursion is performed to get this right.

One thing to notice

- This way of computing the Fibonacci function is elegant, but inefficient.
- It “recomputes” answers again and again.
- To improve speed, need to save known answers in a table:
 - One entry per answer.
 - Such a table is called a cache.

The Fibonacci Function

- Mathematical definition:
 - fib(0) = 0
 - fib(1) = 1
 - fib(n) = fib(n-1) + fib(n-2), n ≥ 2
- Fibonacci sequence: 0, 1, 1, 2, 3, 5, 8, 13, ...

static int fib(int n) {
 if (n == 0) return 0;
 else if (n == 1) return 1;
 else return fib(n-2) + fib(n-1);
}

Memoization (fancy term for “caching”)

- Memoization is an optimization technique used to speed up computer programs by having function calls avoid repeating the calculation of results for previously processed inputs.
- The first time the function is called, we save result.
- The next time, we can look the result up.
 - Assumes a “side effect free” function: The function just computes the result, it doesn’t change things.
 - If the function depends on anything that changes, must “empty” the saved results list.

Adding Memoization to our solution

Before:
static int fib(int n) {
 if (n == 0) return 0;
 else if (n == 1) return 1;
 else return fib(n-2) + fib(n-1);
}

After:
static ArrayList<Integer> cached = new ArrayList<Integer>();
static int fib(int n) {
 if(n < cached.size())
 return cached.get(n);
 int v;
 if (n == 0)
 v = 0;
 else if (n == 1)
 v = 1;
 else
 v = fib(n-2) + fib(n-1);
 // cached[n] = fib(n). This code makes use of the fact
 // that an ArrayList adds elements to the end of the list
 if(n == cached.size())
 cached.add(v);
 return v;
}
Notice the development process

- We started with the idea of recursion
- Created a very simple recursive procedure
- Noticed it will be slow, because it wastefully recomputes the same thing again and again
- So made it a bit more complex but gained a lot of speed in doing so
- This is a common software engineering pattern

A Smarter Version

- Why did it work?
 - This cached list “works” because for each value of n, either cached.get(n) is still undefined, or has fib(n)
 - Takes advantage of the fact that an ArrayList adds elements at the end, and indexes from 0

<table>
<thead>
<tr>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>cached.get(0)=0</td>
<td>cached.get(1)=1</td>
<td>... cached.get(n)=fib(n)</td>
<td></td>
</tr>
</tbody>
</table>

Property of our code: cached.get(n) accessed after fib(n) computed

A Smarter Version

- Why did it work?
 - This cached list “works” because for each value of n, either cached.get(n) is still undefined, or has fib(n)
 - Takes advantage of the fact that an ArrayList adds elements at the end, and indexes from 0

Positive Integer Powers

- Power computation:
 - \(a^0 = 1 \)
 - If n is nonzero and even, \(a^n = (a^{n/2})^2 \)
 - If n is odd, \(a^n = a(a^{n/2})^2 \)

 - Java note: If x and y are integers, “x/y” returns the integer part of the quotient

Example:

\[a5 = a(a5/2)^2 = a(a2)^2 = a((a2/2)^2)^2 = a(a2)^2 \]

Note: this requires 3 multiplications rather than 5!

A Smarter Version

- Why did it work?
 - This cached list “works” because for each value of n, either cached.get(n) is still undefined, or has fib(n)
 - Takes advantage of the fact that an ArrayList adds elements at the end, and indexes from 0

<table>
<thead>
<tr>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>cached.get(0)=0</td>
<td>cached.get(1)=1</td>
<td>... cached.get(n)=fib(n)</td>
<td></td>
</tr>
</tbody>
</table>

Property of our code: cached.get(n) accessed after fib(n) computed

A Smarter Version

- Power computation:
 - \(a^0 = 1 \)
 - If n is nonzero and even, \(a^n = (a^{n/2})^2 \)
 - If n is odd, \(a^n = a(a^{n/2})^2 \)

Example:

\[a5 = a(a5/2)^2 = a(a2)^2 = a((a2/2)^2)^2 = a(a2)^2 \]

Note: this requires 3 multiplications rather than 5!

A Smarter Version in Java

- Static int power(int a, int n)
 - if (n == 0) return 1;
 - if (n % 2 == 0) return halfPower*halfPower;
 - return halfPower*halfPower*a;

+ The method has two parameters and a local variable
+ Why aren’t these overwritten on recursive calls?
How Java “compiles” recursive code

- Key idea:
 - Java uses a stack to remember parameters and local variables across recursive calls
 - Each method invocation gets its own stack frame

- A stack frame contains storage for
 - Local variables of method
 - Parameters of method
 - Return info (return address and return value)
 - Perhaps other bookkeeping info

Stacks

- Like a stack of dinner plates
- You can push data on top or pop data off the top in a LIFO (last-in-first-out) fashion
- A queue is similar, except it is FIFO (first-in-first-out)

Stack Frame

- A new stack frame is pushed with each recursive call
- The stack frame is popped when the method returns
 - Leaving a return value (if there is one) on top of the stack

Example: power(2, 5)

Stack Frame

- A new stack frame is pushed with each recursive call
- The stack frame is popped when the method returns
 - Leaving a return value (if there is one) on top of the stack

How Do We Keep Track?

- Many frames may exist, but computation is only occurring in the top frame
- The ones below it are waiting for results
- The hardware has nice support for this way of implementing function calls, and recursion is just a kind of function call

Conclusion

- Recursion is a convenient and powerful way to define functions
- Problems that seem insurmountable can often be solved in a “divide-and-conquer” fashion:
 - Reduce a big problem to smaller problems of the same kind, solve the smaller problems
 - Recombine the solutions to smaller problems to form solution for big problem
- Important application (next lecture): parsing
Extra slides

- For use if we have time for one more example of recursion
- This builds on the ideas in the Fibonacci example

Binomial Coefficients

Combinations are also called binomial coefficients because they appear as coefficients in the expansion of the binomial power \((x+y)^n\):

\[(x+y)^n = \binom{n}{0}x^n + \binom{n}{1}x^{n-1}y + \binom{n}{2}x^{n-2}y^2 + \cdots + \binom{n}{n}y^n\]

\[= \sum_{i=0}^{n} \binom{n}{i} x^{n-i}y^i\]

Combinations (a.k.a. Binomial Coefficients)

- How many ways can you choose \(r\) items from a set of \(n\) distinct elements? \(\binom{n}{r}\) "n choose \(r\)"
 \[\binom{2}{2} = \text{number of 2-element subsets of } \{A,B,C,D\}\]
 \[\binom{4}{2} = \text{number of 2-element subsets of } \{A,B,C,D,E\}\]

- Therefore, \(\binom{5}{2} = \binom{4}{1} + \binom{4}{2}\)
- … in perfect form to write a recursive function!

Combinations Have Two Base Cases

- \(\binom{n}{0} = \binom{n}{n-1} = 1, \ n > r > 0\)
- \(\binom{n}{n} = 1, \ \binom{n}{0} = 1\)

- Two base cases
- Coming up with right base cases can be tricky!
- General idea:
 - Determine argument values for which recursive case does not apply
 - Introduce a base case for each one of these

Recursive Program for Combinations

```java
static int combs(int n, int r) {  //assume n>=r>=0
    if (r == 0 || r == n) return 1; //base cases
    else return combs(n-1,r) + combs(n-1,r-1);
}
```

Combinations

\[\binom{n}{r} = \binom{n-1}{r-1} + \binom{n-1}{r}, \ \ n > r > 0\]
\[\binom{n}{n} = 1, \ \binom{n}{0} = 1\]

```
\begin{array}{cccc}
\binom{0}{0} & \binom{0}{1} & \binom{1}{1} & \text{Pascal's triangle} \\
\binom{2}{0} & \binom{2}{1} & \binom{2}{2} & 1, 1, 1 \\
\binom{3}{0} & \binom{3}{1} & \binom{3}{2} & \binom{3}{3} & 1, 2, 1 \\
\binom{4}{0} & \binom{4}{1} & \binom{4}{2} & \binom{4}{3} & \binom{4}{4} & 1, 3, 3, 1 \\
\end{array}
```

Pascal's triangle

```
\begin{array}{cccccc}
\binom{0}{0} & \binom{1}{0} & \binom{2}{0} & \binom{3}{0} & \binom{4}{0} & \binom{n}{0} \\
\binom{0}{1} & \binom{1}{1} & \binom{2}{1} & \binom{3}{1} & \binom{4}{1} & \binom{n}{1} \\
\binom{0}{2} & \binom{1}{2} & \binom{2}{2} & \binom{3}{2} & \binom{4}{2} & \binom{n}{2} \\
\binom{0}{3} & \binom{1}{3} & \binom{2}{3} & \binom{3}{3} & \binom{4}{3} & \binom{n}{3} \\
\binom{0}{4} & \binom{1}{4} & \binom{2}{4} & \binom{3}{4} & \binom{4}{4} & \binom{n}{4} \\
\end{array}
```
Exercise for the reader (you!)

- Modify our recursive program so that it caches results
- Same idea as for our caching version of the fibonacci series

Question to ponder: When is it worthwhile to adding caching to a recursive function?
- Certainly not always…
- Must think about tradeoffs: space to maintain the cached results vs speedup obtained by having them

Something to think about

- With fib(), it was kind of a trick to arrange that: \(\text{cached}[n] = \text{fib}(n) \)

- Caching combinatorial values will force you to store more than just the answer:
 - Create a class called `Triple`
 - Design it to have integer fields \(n, r, v \)
 - Store `Triple` objects into `ArrayList<Triple> cached`;
 - Search `cached` for a saved value matching \(n \) and \(r \)
 - Hint: use a `foreach` loop