

A well-known scientist (some say it was Bertrand Russell) once gave a public lecture on astronomy. He described how the earth orbits around the sun and how the sun, in turn, orbits around the center of a vast collection of stars called our galaxy.

At the end of the lecture, a little old lady at the back of the room got up and said: "What you have told us is rubbish. The world is really a flat plate supported on the back of a giant tortoise." The scientist gave a superior smile before replying, "What is the tortoise standing on?"' 'You're very clever, young man, very clever', said the old lady. 'But it's turtles all the way down!"

INDUCTION

Lecture 20

Overview: Reasoning about Programs

\square Our broad problem: code is unlikely to be correct if we don't have good reasons for believing it works
\square We need clear problem statements
\square And then a rigorous way to convince ourselves that what we wrote solves the problem
\square But reasoning about programs can be hard
\square Especially with recursion, concurrency
\square Today focus on recursion

Overview: Reasoning about Programs

\square Recursion
\square A programming strategy that solves a problem by reducing it to simpler or smaller instance(s) of the same problem
\square Induction
\square A mathematical strategy for proving statements about natural numbers $0,1,2, \ldots$ (or more generally, about inductively defined objects)
\square They are very closely related
\square Induction can be used to establish the correctness and complexity of programs

Defining Functions

\square It is often useful to describe a function in different ways
\square Let $S:$ int \rightarrow int be the function where $S(n)$ is the sum of the integers from 0 to n. For example,

$$
S(0)=0 \quad S(3)=0+1+2+3=6
$$

\square Definition: iterative form
$\square S(n)=0+1+\ldots+n$

$$
=\sum_{i=0}^{n} i
$$

\square Another characterization: closed form
$-S(n)=n(n+1) / 2$

Sum of Squares

\square A more complex example
\square Let $S Q:$ int \rightarrow int be the function that gives the sum of the squares of integers from 0 to n :

$$
\begin{aligned}
& S Q(0)=0 \\
& S Q(3)=0^{2}+1^{2}+2^{2}+3^{2}=14
\end{aligned}
$$

\square Definition (iterative form):

$$
S Q(n)=0^{2}+1^{2}+\ldots+n^{2}
$$

\square Is there an equivalent closed-form expression?

Closed-Form Expression for SQ(n)

\square Sum of integers between 0 through n was $n(n+1) / 2$ which is a quadratic in n (that is, $\mathrm{O}\left(\mathrm{n}^{2}\right)$)

- Inspired guess: perhaps sum of squares of integers between 0 through n is a cubic in n

\square Conjecture: $S Q(n)=a n^{3}+b n^{2}+c n+d$ where a, b, c, d are unknown coefficients
\square How can we find the values of the four unknowns?
\square Idea: Use any 4 values of n to generate 4 linear equations, and then solve

Finding Coefficients

$$
S Q(n)=0^{2}+1^{2}+\ldots+n^{2}=a n^{3}+b n^{2}+c n+d
$$

\square Use $n=0,1,2,3$
$\square S Q(0)=0 \quad=a \cdot 0+b \cdot 0+c \cdot 0+d$
$\square S Q(1)=1 \quad=a \cdot 1+b \cdot 1+c \cdot 1+d$

$\square S Q(2)=5=a \cdot 8+b \cdot 4+c \cdot 2+d$
$\square S Q(3)=14=a \cdot 27+b \cdot 9+c \cdot 3+d$
\square Solve these 4 equations to get
$\square a=1 / 3$
$b=1 / 2$
$c=1 / 6$
$d=0$

Is the Formula Correct?

This suggests

$$
\begin{aligned}
S Q(n) & =0^{2}+1^{2}+\ldots+n^{2} \\
& =n^{3} / 3+n^{2} / 2+n / 6 \\
& =n(n+1)(2 n+1) / 6
\end{aligned}
$$

\square Question: Is this closed-form solution true for all n?
\square Remember, we only used $n=0,1,2,3$ to determine these coefficients
\square We do not know that the closed-form expression is valid for other values of n

One Approach

\square Try a few other values of n to see if they work.
\square Try $\mathrm{n}=5: \quad \mathrm{SQ}(\mathrm{n})=0+1+4+9+16+25=55$
\square Closed-form expression: 5•6•11/6=55
\square Works!
\square Try some more values...
\square We can never prove validity of the closed-form solution for all values of n this way, since there are an infinite number of values of n

A Recursive Definition

\square To solve this problem, let's express $S Q(n)$ in a different way:
$\square S Q(n)=0^{2}+1^{2}+\ldots+(n-1)^{2}+n^{2}$

- The part in the box is just $S Q(n-1)$
\square This leads to the following recursive definition
$\square S Q(0)=0$
Base Case
$\square S Q(n)=S Q(n-1)+n^{2}, n>0$
\square Thus,
$\square \mathrm{SQ}(4)=\mathrm{SQ}(3)+4^{2}=\mathrm{SQ}(2)+3^{2}+4^{2}=\mathrm{SQ}(1)+2^{2}+3^{2}+$ $4^{2}=S Q(0)+1^{2}+2^{2}+3^{2}+4^{2}=0+1^{2}+2^{2}+3^{2}+4^{2}$

Are These Two Functions Equal?

$\square \mathrm{SQ}_{\mathrm{r}}(\mathrm{r}=$ recursive $)$

$$
\begin{aligned}
& S Q_{r}(0)=0 \\
& S Q_{r}(n)=S Q_{r}(n-1)+n^{2}, n>0
\end{aligned}
$$

$\square S Q_{c}(c=$ closed-form)

$$
S Q_{c}(n)=n(n+1)(2 n+1) / 6
$$

Induction over Integers

\square To prove that some property $\mathrm{P}(\mathrm{n})$ holds for all integers $n \geq 0$,

1. Basis: Show that $P(0)$ is true
2. Induction Step: Assuming that $P(k)$ is true for an unspecified integer k, show that $P(k+1)$ is true
\square Conclusion: Because we could have picked any k, we conclude that $P(n)$ holds for all integers $n \geq 0$

Dominos

\square Assume equally spaced dominos, and assume that spacing between dominos is less than domino length
\square How would you argue that all dominos would fall?
\square Dumb argument:

- Domino 0 falls because we push it over
- Domino 0 hits domino 1, therefore domino 1 falls
- Domino 1 hits domino 2, therefore domino 2 falls
- Domino 2 hits domino 3, therefore domino 3 falls
- ...
\square Is there a more compact argument we can make?

Better Argument

\square Argument:

- Domino 0 falls because we push it over (Base Case or Basis)
- Assume that domino k falls over (Induction Hypothesis)
- Because domino k's length is larger than inter-domino spacing, it will knock over domino k+1 (Inductive Step)
\square Because we could have picked any domino to be the $\mathrm{k}^{\text {th }}$ one, we conclude that all dominos will fall over (Conclusion)
\square This is an inductive argument
\square This version is called weak induction
\square There is also strong induction (later)
\square Not only is this argument more compact, it works for an arbitrary number of dominoes!

$S Q_{r}(n)=S Q_{c}(n)$ for all n ?

\square Define $P(n)$ as $S Q_{r}(n)=S Q_{c}(n)$

\square Prove P(0)
\square Assume $P(k)$ for unspecified k, and then prove $P(k+1)$ under this assumption

Proof (by Induction)

$$
\begin{aligned}
& \operatorname{Recall:}^{S Q_{r}(0)=0} \\
& S Q_{r}(n)=S Q_{r}(n-1)+n^{2}, \quad n>0 \\
& S Q_{c}(n)=n(n+1)(2 n+1) / 6
\end{aligned}
$$

\square Let $P(n)$ be the proposition that $S Q_{r}(n)=S Q_{c}(n)$
\square Basis: $P(0)$ holds because $S Q_{r}(0)=0$ and $S Q_{c}(0)=0$ by definition
\square Induction Hypothesis: Assume $S Q_{r}(k)=S Q_{c}(k)$

- Inductive Step:

$$
\begin{aligned}
S Q_{r}(k+1) & =S Q_{r}(k)+(k+1)^{2} & & \text { by definition of } S Q_{r}(k+1) \\
& =S Q_{c}(k)+(k+1)^{2} & & \text { by the Induction } H y p o t h e s i s \\
& =k(k+1)(2 k+1) / 6+(k+1)^{2} & & \text { by definition of } S Q_{c}(k) \\
& =(k+1)(k+2)(2 k+3) / 6 & & \text { algebra } \\
& =S Q_{c}(k+1) & & \text { by definition of } S Q_{c}(k+1)
\end{aligned}
$$

\square Conclusion: $S Q_{r}(n)=S Q_{c}(n)$ for all $n \varepsilon 0$

Another Example

\square Prove that $0+1+\ldots+n=n(n+1) / 2$
\square Basis: Obviously holds for $\mathrm{n}=0$

- Induction Hypothesis: Assume 0+1+... $+\mathrm{k}=\mathrm{k}(\mathrm{k}+1) / 2$
\square Inductive Step:

$$
\begin{aligned}
0+1+\ldots+(k+1) & =[0+1+\ldots+k]+(k+1) & & \text { by def } \\
& =k(k+1) / 2+(k+1) & & \text { by I.H. } \\
& =(k+1)(k+2) / 2 & & \text { algebra }
\end{aligned}
$$

- Conclusion: $0+1+\ldots+n=n(n+1) / 2$ for all $n \geq 0$

A Note on Base Cases

\square Sometimes we are interested in showing some proposition is true for integers $\geq b$
\square Intuition: we knock over domino b, and dominoes in front get knocked over; not interested in $0,1, \ldots,(b-1)$

- In general, the base case in induction does not have to be 0
\square If base case is some integer b
- Induction proves the proposition for $n=b, b+1, b+2, \ldots$
- Does not say anything about $n=0,1, \ldots, b-1$

Weak Induction: Nonzero Base Case

\square Claim: You can make any amount of postage above $8 申$ with some combination of 3ϕ and 5ϕ stamps
\square Basis: True for $8 ¢$: $8=3+5$
\square Induction Hypothesis: Suppose true for some k ≥ 8

- Inductive Step:
- If used a 5ϕ stamp to make k, replace it by two 3ϕ stamps. Get k+1.
- If did not use a 5ϕ stamp to make k, must have used at least three 3ϕ stamps. Replace three 3ϕ stamps by two 5ϕ stamps. Get $k+1$.
\square Conclusion: Any amount of postage above 8ϕ can be made with some combination of 3ϕ and 5ϕ stamps

What are the "Dominos"?

\square In some problems, it can be tricky to determine how to set up the induction
\square This is particularly true for geometric problems that can be attacked using induction

A Tiling Problem

\square A chessboard has one square cut out of it
\square Can the remaining board be tiled using tiles of the shape shown in the picture (rotation allowed)?
\square Not obvious that we can use induction!

Proof Outline

\square Consider boards of size $2^{n} \times 2^{n}$ for $n=1,2, \ldots$
\square Basis: Show that tiling is possible for 2×2 board
\square Induction Hypothesis: Assume the $2^{k} \times 2^{k}$ board can be tiled

- Inductive Step: Using I.H. show that the $2^{k+1} \times 2^{k+1}$ board can be tiled
\square Conclusion: Any $2^{n} \times 2^{n}$ board can be tiled, $n=1,2, \ldots$
\square Our chessboard (8×8) is a special case of this argument
\square We will have proven the 8×8 special case by solving a more general problem!

Basis

\square The 2×2 board can be tiled regardless of which one of the four pieces has been omitted

2×2 board

4×4 Case

\square Divide the 4×4 board into four 2×2 sub-boards
\square One of the four sub-boards has the missing piece

- By the I.H., that sub-board can be tiled since it is a 2×2 board with a missing piece
\square Tile center squares of three remaining sub-boards as shown
- This leaves three 2×2 boards, each with a missing piece
- We know these can be tiled by the Induction Hypothesis

$2^{k+1} \times 2^{k+1}$ case

\square Divide board into four sub-boards and tile the center squares of the three complete sub-boards
\square The remaining portions of the sub-boards can be tiled by the I.H. (which assumes we can tile $2^{k} \times 2^{k}$ boards)

When Induction Fails

\square Sometimes an inductive proof strategy for some proposition may fail
\square This does not necessarily mean that the proposition is wrong

- It may just mean that the particular inductive strategy you are using is the wrong choice
\square A different induction hypothesis (or a different proof strategy altogether) may succeed

Tiling Example (Poor Strategy)

\square Let's try a different induction strategy
\square Proposition
\square Any $\mathrm{n} \times \mathrm{n}$ board with one missing square can be tiled
\square Problem

- A 3×3 board with one missing square has 8 remaining squares, but our tile has 3 squares; tiling is impossible
\square Thus, any attempt to give an inductive proof of this proposition must fail
\square Note that this failed proof does not tell us anything about the 8×8 case

A Seemingly Similar Tiling Problem

\square A chessboard has opposite corners cut out of it. Can the remaining board be tiled using tiles of the shape shown in the picture (rotation allowed)?
\square Induction fails here. Why? (Well...for one thing, this board can't be tiled with dominos.)

Strong Induction

\square We want to prove that some property P holds for all n
\square Weak induction

- $P(0)$: Show that property P is true for 0
- $P(k) \Rightarrow P(k+1)$: Show that if property P is true for k, it is true for $k+1$
- Conclude that $P(n)$ holds for all n
\square Strong induction
- $P(0)$: Show that property P is true for 0
- $P(0)$ and $P(1)$ and \ldots and $P(k) \Rightarrow P(k+1)$: show that if P is true for numbers less than or equal to k, it is true for $k+1$
- Conclude that $P(n)$ holds for all n
\square Both proof techniques are equally powerful

Conclusion

\square Induction is a powerful proof technique
\square Recursion is a powerful programming technique
\square Induction and recursion are closely related
\square We can use induction to prove correctness and complexity results about recursive programs

