PRIORIY QUEUES AND HEAPS

Lecture 18
CS2110 Fall 2013
Readings and Homework

- Read Chapter 26 to learn about heaps

- Salespeople often make matrices that show all the great features of their product that the competitor’s product lacks. Try this for a heap versus a BST. First, try and sell someone on a BST: List some desirable properties of a BST that a heap lacks. Now be the heap salesperson: List some good things about heaps that a BST lacks. Can you think of situations where you would favor one over the other?

With ZipUltra heaps, you’ve got it made in the shade my friend!
The Bag Interface

- A Bag:

```java
interface Bag<E> {
    void insert(E obj);
    E extract(); //extract some element
    boolean isEmpty();
}
```

Examples: Stack, Queue, PriorityQueue
Stacks and Queues as Lists

• **Stack (LIFO) implemented as list**
 - `insert()`, `extract()` from front of list

• **Queue (FIFO) implemented as list**
 - `insert()` on back of list, `extract()` from front of list

• **All Bag operations are O(1)**
Priority Queue

• A Bag in which data items are Comparable

• lesser elements (as determined by compareTo()) have higher priority

• extract() returns the element with the highest priority = least in the compareTo() ordering

• break ties arbitrarily
Priority Queue Examples

- **Scheduling jobs to run on a computer**
 - default priority = arrival time
 - priority can be changed by operator

- **Scheduling events to be processed by an event handler**
 - priority = time of occurrence

- **Airline check-in**
 - first class, business class, coach
 - FIFO within each class
java.util.PriorityQueue<E>

boolean add(E e) {...} //insert an element (insert)
void clear() {...} //remove all elements
E peek() {...} //return min element without removing
 //(null if empty)
E poll() {...} //remove min element (extract)
 //(null if empty)
int size() {...}
Priority Queues as Lists

- Maintain as unordered list
 - `insert()` puts new element at front – $O(1)$
 - `extract()` must search the list – $O(n)$

- Maintain as ordered list
 - `insert()` must search the list – $O(n)$
 - `extract()` gets element at front – $O(1)$

- In either case, $O(n^2)$ to process n elements

Can we do better?
Important Special Case

- Fixed number of priority levels 0,...,p – 1
- FIFO within each level
- Example: airline check-in

- `insert()` – insert in appropriate queue – $O(1)$
- `extract()` – must find a nonempty queue – $O(p)$
Heaps

• A heap is a concrete data structure that can be used to implement priority queues
• Gives better complexity than either ordered or unordered list implementation:
 – `insert()`: $O(\log n)$
 – `extract()`: $O(\log n)$
• $O(n \log n)$ to process n elements
• Do not confuse with heap memory, where the Java virtual machine allocates space for objects – different usage of the word heap
Heaps

• Binary tree with data at each node
• Satisfies the **Heap Order Invariant**: The least (highest priority) element of any subtree is found at the root of that subtree

• Size of the heap is “fixed” at n. (But can usually double n if heap fills up)
Least element in any subtree is always found at the root of that subtree.

Note: 19, 20 < 35: we can often find smaller elements deeper in the tree!
Examples of Heaps

• Ages of people in family tree
 – parent is always older than children, but you can have an uncle who is younger than you

• Salaries of employees of a company
 – bosses generally make more than subordinates, but a VP in one subdivision may make less than a Project Supervisor in a different subdivision
Balanced Heaps

These add two restrictions:

1. Any node of depth \(< d - 1\) has exactly 2 children, where \(d\) is the height of the tree
 - implies that any two maximal paths (path from a root to a leaf) are of length \(d\) or \(d - 1\), and the tree has at least \(2^d\) nodes

- All maximal paths of length \(d\) are to the left of those of length \(d - 1\)
Example of a Balanced Heap

```
d = 3
```

```
4
6
21
22
38
55
8
10
14
19
20
35
```

```
d = 3
```
Store in an ArrayList or Vector

- Elements of the heap are stored in the array in order, going across each level from left to right, top to bottom

- The children of the node at array index n are found at $2n + 1$ and $2n + 2$

- The parent of node n is found at $(n - 1)/2$
Store in an ArrayList or Vector

children of node n are found at 2n + 1 and 2n + 2
Store in an ArrayList or Vector

children of node n are found at $2n + 1$ and $2n + 2$
insert()

• Put the new element at the end of the array

• If this violates heap order because it is smaller than its parent, swap it with its parent

• Continue swapping it up until it finds its rightful place

• The heap invariant is maintained!
insert()
insert()
insert()
insert()
insert()
insert()
insert()
insert()

insert()
insert()
• Time is $O(\log n)$, since the tree is balanced
 – size of tree is exponential as a function of depth
 – depth of tree is logarithmic as a function of size
class PriorityQueue<E> extends java.util.Vector<E> {

 public void insert(E obj) {
 super.add(obj); //add new element to end of array
 rotateUp(size() - 1);
 }

 private void rotateUp(int index) {
 if (index == 0) return;
 int parent = (index - 1)/2;
 if (elementAt(parent).compareTo(elementAt(index)) <= 0)
 return;
 swap(index, parent);
 rotateUp(parent);
 }
}
extract()

- Remove the least element – it is at the root
- This leaves a hole at the root – fill it in with the last element of the array
- If this violates heap order because the root element is too big, swap it down with the smaller of its children
- Continue swapping it down until it finds its rightful place
- The heap invariant is maintained!
extract()

- Time is $O(\log n)$, since the tree is balanced
public E extract() {
 if (size() == 0) return null;
 E temp = elementAt(0);
 setElementAt(elementAt(size() - 1), 0);
 setSize(size() - 1);
 rotateDown(0);
 return temp;
}

private void rotateDown(int index) {
 int child = 2*(index + 1); //right child
 if (child >= size())
 return;
 if (elementAt(index).compareTo(elementAt(child)) <= 0)
 return;
 swap(index, child);
 rotateDown(child);
}
Given a `Comparable[]` array of length n,

- Put all n elements into a heap – $O(n \log n)$
- Repeatedly get the min – $O(n \log n)$

```java
public static void heapSort(Comparable[] a) {
    PriorityQueue<Comparable> pq = new PriorityQueue<>(a);
    for (int i = 0; i < a.length; i++) {
        a[i] = pq.extract();
    }
}
Example: Probabilistic model of bank-customer arrival times and transaction times, how many tellers are needed?

- Assume we have a way to generate random inter-arrival times
- Assume we have a way to generate transaction times
- Can simulate the bank to get some idea of how long customers must wait

Time-Driven Simulation
- Check at each tick to see if any event occurs

Event-Driven Simulation
- Advance clock to next event, skipping intervening ticks
- This uses a PQ!