SEARCHING, SORTING, AND ASYMPTOTIC COMPLEXITY
Textbook: Chapter 4

Homework:
- Recall our discussion of linked lists from two weeks ago.
- What is the worst case complexity for appending N items on a linked list? For testing to see if the list contains X? What would be the best case complexity for these operations?
- If we were going to talk about $O()$ complexity for a list, which of these makes more sense: worst, average or best-case complexity? Why?
What Makes a Good Algorithm?

- Suppose you have two possible algorithms or data structures that basically do the same thing; which is better?

- Well... what do we mean by better?
 - Faster?
 - Less space?
 - Easier to code?
 - Easier to maintain?
 - Required for homework?

- How do we measure time and space for an algorithm?
Sample Problem: Searching

- Determine if *sorted* array `a` contains integer `v`
- First solution: Linear Search (check each element)

```java
/** return true iff v is in a */
static boolean find(int[] a, int v) {
    for (int i = 0; i < a.length; i++) {
        if (a[i] == v) return true;
    }
    return false;
}
```

```java
static boolean find(int[] a, int v) {
    for (int x : a) {
        if (x == v) return true;
    }
    return false;
}
```
Sample Problem: Searching

Second solution: Binary Search

Still returning true iff v is in a

Keep true: all occurrences of v are in b[low..high]

```java
static boolean find (int[] a, int v) {
    int low= 0;
    int high= a.length - 1;
    while (low <= high) {
        int mid = (low + high)/2;
        if (a[mid] == v) return true;
        if (a[mid] < v) low= mid + 1;
        else high= mid - 1;
    }
    return false;
}
```
Linear Search vs Binary Search

Which one is better?
- Linear: easier to program
- Binary: faster… isn’t it?

How do we measure speed?
- Experiment?
- Proof?
- What inputs do we use?

- **Simplifying assumption #1:**
 Use *size* of input rather than input itself
- **For sample search problem, input size is n+1 where n is array size**

- **Simplifying assumption #2:**
 Count number of “*basic steps*” rather than computing exact times
One Basic Step $=$ One Time Unit

Basic step:
- Input/output of scalar value
- Access value of scalar variable, array element, or object field
- Assign to variable, array element, or object field
- Do one arithmetic or logical operation
- Method invocation (not counting arg evaluation and execution of method body)

- For conditional: number of basic steps on branch that is executed
- For loop: \((\text{number of basic steps in loop body}) \times (\text{number of iterations})\)
- For method: number of basic steps in method body (include steps needed to prepare stack-frame)
Runtime vs Number of Basic Steps

Is this cheating?
- The runtime is not the same as number of basic steps
- Time per basic step varies depending on computer, compiler, details of code...

Well ... yes, in a way
- But the number of basic steps is proportional to the actual runtime

Which is better?
- \(n\) or \(n^2\) time?
- \(100\ n\) or \(n^2\) time?
- \(10,000\ n\) or \(n^2\) time?

As \(n\) gets large, multiplicative constants become less important

Simplifying assumption #3: Ignore multiplicative constants
We say \(f(n) \) is order of \(g(n) \) if \(f(n) \) is bounded by a constant times \(g(n) \)

Notation: \(f(n) \) is \(O(g(n)) \)

Roughly, \(f(n) \) is \(O(g(n)) \) means that \(f(n) \) grows like \(g(n) \) or slower, to within a constant factor

"Constant" means fixed and independent of \(n \)

Example: \((n^2 + n) \) is \(O(n^2) \)

- We know \(n \leq n^2 \) for \(n \geq 1 \)
- So \(n^2 + n \leq 2 \cdot n^2 \) for \(n \geq 1 \)
- So by definition, \(n^2 + n \) is \(O(n^2) \) for \(c=2 \) and \(N=1 \)

Formal definition: \(f(n) \) is \(O(g(n)) \) if there exist constants \(c \) and \(N \) such that for all \(n \geq N \), \(f(n) \leq c \cdot g(n) \)
A Graphical View

To prove that $f(n)$ is $O(g(n))$:

- Find N and c such that $f(n) \leq c \cdot g(n)$ for all $n > N$
- Pair (c, N) is a *witness pair* for proving that $f(n)$ is $O(g(n))$
Claim: $100n + \log n$ is $O(n)$

We know $\log n \leq n$ for $n \geq 1$

So $100n + \log n \leq 101n$ for $n \geq 1$

So by definition,

$100n + \log n$ is $O(n)$ for $c = 101$ and $N = 1$

Claim: $\log_B n$ is $O(\log_A n)$

since $\log_B n$ is $(\log_B A)(\log_A n)$

Question: Which grows faster: n or $\log n$?
Big-O Examples

Let \(f(n) = 3n^2 + 6n - 7 \)
- \(f(n) \) is \(O(n^2) \)
- \(f(n) \) is \(O(n^3) \)
- \(f(n) \) is \(O(n^4) \)
- …

\[g(n) = 4\, n \log n + 34\, n - 89 \]
- \(g(n) \) is \(O(n \log n) \)
- \(g(n) \) is \(O(n^2) \)

\[h(n) = 20 \cdot 2^n + 40n \]
- \(h(n) \) is \(O(2^n) \)

\(a(n) = 34 \)
- \(a(n) \) is \(O(1) \)

Only the leading term (the term that grows most rapidly) matters
Problem-Size Examples

Consider a computing device that can execute 1000 operations per second; how large a problem can we solve?

<table>
<thead>
<tr>
<th></th>
<th>1 second</th>
<th>1 minute</th>
<th>1 hour</th>
</tr>
</thead>
<tbody>
<tr>
<td>n</td>
<td>1000</td>
<td>60,000</td>
<td>3,600,000</td>
</tr>
<tr>
<td>$n \log n$</td>
<td>140</td>
<td>4893</td>
<td>200,000</td>
</tr>
<tr>
<td>n^2</td>
<td>31</td>
<td>244</td>
<td>1897</td>
</tr>
<tr>
<td>$3n^2$</td>
<td>18</td>
<td>144</td>
<td>1096</td>
</tr>
<tr>
<td>n^3</td>
<td>10</td>
<td>39</td>
<td>153</td>
</tr>
<tr>
<td>2^n</td>
<td>9</td>
<td>15</td>
<td>21</td>
</tr>
</tbody>
</table>
Commonly Seen Time Bounds

<table>
<thead>
<tr>
<th>Time Bound</th>
<th>Description</th>
<th>Quality</th>
</tr>
</thead>
<tbody>
<tr>
<td>O(1)</td>
<td>constant</td>
<td>excellent</td>
</tr>
<tr>
<td>O(log n)</td>
<td>logarithmic</td>
<td>excellent</td>
</tr>
<tr>
<td>O(n)</td>
<td>linear</td>
<td>good</td>
</tr>
<tr>
<td>O(n log n)</td>
<td>n log n</td>
<td>pretty good</td>
</tr>
<tr>
<td>O(n²)</td>
<td>quadratic</td>
<td>OK</td>
</tr>
<tr>
<td>O(n³)</td>
<td>cubic</td>
<td>maybe OK</td>
</tr>
<tr>
<td>O(2ⁿ)</td>
<td>exponential</td>
<td>too slow</td>
</tr>
</tbody>
</table>
Worst-Case/Expected-Case Bounds

We can’t possibly determine time bounds for all imaginable inputs of size n.

Simplifying assumption #4:
Determine number of steps for either
- worst-case or
- expected-case

• Worst-case
 - Determine how much time is needed for the worst possible input of size n

• Expected-case
 - Determine how much time is needed on average for all inputs of size n
Simplifying Assumptions

Use the size of the input rather than the input itself – \(n \)

Count the number of “basic steps” rather than computing exact time

Ignore multiplicative constants and small inputs (order-of, big-O)

Determine number of steps for either
- worst-case
- expected-case

These assumptions allow us to analyze algorithms effectively
Worst-Case Analysis of Searching

Linear Search
```java
/** return true iff v is in a */
static bool find (int[] a, int v) {
for (int x : a) {
    if (x == v) return true;
}
return false;
}
worst-case time: O(n)
```

Binary Search
```java
static bool find (int[] a, int v) {
    int low= 0;
    int high= a.length – 1;
    while (low <= high) {
        int mid = (low + high)/2;
        if (a[mid] == v) return true;
        if (a[mid] < v)
            low= mid + 1;
        else
            high= mid - 1;
    }
    return false;
}
worst-case time: O(log n)
```
Comparison of Algorithms

Linear vs. Binary Search

Number of Items in Array

Max Number of Comparisons

- Linear Search
- Binary Search
Comparison of Algorithms

Linear vs. Binary Search

- **Y-axis:** Max Number of Comparisons
- **X-axis:** Number of Items in Array

Legend:
- **Linear Search** (purple squares)
- **Binary Search** (yellow triangles)

The graph illustrates the comparison between Linear and Binary Search algorithms. The number of comparisons is shown on the y-axis, and the number of items in the array is shown on the x-axis. The data points indicate that Binary Search is significantly more efficient than Linear Search, especially as the number of items in the array increases.
Comparison of Algorithms

Linear vs. Binary Search

- **Max Number of Comparisons**
 - 0
 - 7500000
 - 15000000
 - 22500000
 - 30000000

- **Number of Items in Array**
 - 0
 - 7500000
 - 15000000
 - 22500000
 - 30000000

- **Graph Legend**
 - □ Linear Search
 - ▲ Binary Search
Analysis of Matrix Multiplication

Multiply n-by-n matrices A and B:

Convention, matrix problems measured in terms of n, the number of rows, columns
- Input size is really $2n^2$, not n
- Worst-case time: $O(n^3)$
- Expected-case time: $O(n^3)$

```c
for (i = 0; i < n; i++)
    for (j = 0; j < n; j++) {
        c[i][j] = 0;
        for (k = 0; k < n; k++)
            c[i][j] += a[i][k] * b[k][j];
    }
```
Remarks

Once you get the hang of this, you can quickly zero in on what is relevant for determining asymptotic complexity

- Example: you can usually ignore everything that is not in the innermost loop. Why?

Main difficulty:

- Determining runtime for recursive programs
Why Bother with Runtime Analysis?

Computers so fast that we can do whatever we want using simple algorithms and data structures, right?

Not really – data-structure/algorithm improvements can be a very big win

Scenario:
- A runs in \(n^2 \) msec
- A' runs in \(n^2 / 10 \) msec
- B runs in \(10 n \log n \) msec

Problem of size \(n=10^3 \)
- A: \(10^3 \) sec \(\approx \) 17 minutes
- A': \(10^2 \) sec \(\approx \) 1.7 minutes
- B: \(10^2 \) sec \(\approx \) 1.7 minutes

Problem of size \(n=10^6 \)
- A: \(10^9 \) sec \(\approx \) 30 years
- A': \(10^8 \) sec \(\approx \) 3 years
- B: \(2 \cdot 10^5 \) sec \(\approx \) 2 days

1 day = 86,400 sec \(\approx \) \(10^5 \) sec
1,000 days \(\approx \) 3 years
Human genome
= 3.5 billion nucleotides
~ 1 Gb

@ 1 base-pair
instruction/√sec

- \(n^2 \rightarrow 388445 \) years
- \(n \log n \rightarrow 30.824 \) hours
- \(n \rightarrow 1 \) hour
Limitations of Runtime Analysis

Big-O can hide a very large constant
 - Example: selection
 - Example: small problems

The specific problem you want to solve may not be the worst case
 - Example: Simplex method for linear programming

Your program may not be run often enough to make analysis worthwhile
 - Example: one-shot vs. every day
 - You may be analyzing and improving the wrong part of the program
 - Very common situation
 - Should use profiling tools
Summary

- **Asymptotic complexity**
 - Used to measure of time (or space) required by an algorithm
 - Measure of the *algorithm*, not the *problem*

- **Searching a sorted array**
 - Linear search: $O(n)$ worst-case time
 - Binary search: $O(\log n)$ worst-case time

- **Matrix operations:**
 - Note: $n = \text{number-of-rows} = \text{number-of-columns}$
 - Matrix-vector product: $O(n^2)$ worst-case time
 - Matrix-matrix multiplication: $O(n^3)$ worst-case time

- **More later with sorting and graph algorithms**