
1	

1	

CS2110–2111 Fall 2013. David Gries	

These slides lead you simply through OO ���

Java, rarely use unexplained terms.	

Examples, rather than formal definitions,���
are the norm. 	

Pages 2..3 are an index into the slides,���
helping you easily find what you want.	

Many slides point to pages in the CS2110 text for more info.	

Use the slides as a quick reference.	

The ppt version, instead of the pdf version, is best, because you
can do the Slide Show and see the animations, helping you
to best read/understand each slide.	

2	

abstract class 42-44	

abstract method 44	

access modifier 11	

aliasing, 17	

Array 50	

 initializer 53	

 length 51	

 ragged 54-55	

assert 14	

assignment 8	

autoboxing 49	

casting 6, 34, 61	

catch clause 73	

class decl 11	

class invariant 12	

getter 13	

immutable 46	

Implements 60	

Import 20	

Indirect reference, 17	

inherit 27	

initializer 53	

Instanceof 40	

Interface 60	

Junit testing 74-80	

local variable 45	

Method 10	

 calling 18	

narrower type 6,���
 35	

Index	

Comparable 63	

Constructor 10, 	

 14, 24, 28 	

 default 29	

enums 81	

equals function 37	

exception 65-72 	

extend 27	

Field 10, 12, 45	

 referencing 18	

final 21	

Function 10, 13	

generic type 56	

3	

new-expression 16	

 for array 52	

null 19	

Object 10	

 creation 16	

object name 10	

Object (class) 30	

overloading 22	

overriding 31-32	

package 20	

parameter 14, 45	

precondition 14	

primitive type 5	

private 12	

procedure 10, 14	

Throwable 67	

throws clause 72	

toString 31-33	

try statement 73	

try clause 73	

type 4	

 generic 56-57	

variable decl 7	

void 14	

weakly typed 4	

wider type 6, 35	

wrapper class 46	

Index	

public 11	

ragged array 54-55	

return statement 13	

return type 13	

setter 14	

shadowing 31	

static 21, 45	

strongly typed 4	

subclass 25	

super 28, 33	

superclass 27	

this 23, 24	

throw stmt 70	

4	

–231 .. 231–1	

Matlab, Python weakly typed: A variable can contain any
value —5, then “a string”, then an array, …	

Java strongly typed: Must declare a variable with its type
before you can use it. It can contain only values of that type	

Type: Set of values together with operations on them	

Strong versus weak typing���
	

Type int:	

values: –2147483648, –2147483647, …, –3, –2, –1,���
 0, 1, 2, 3, 4, 5, …, 2147483646, 2147483647	

operations: +, –, *, /, %, unary –	

	

b % c : remainder when b is divided by c. 67 % 60 = 7 	

5	

Type: Set of values together with operations on them	

Primitive types	

Integer types: byte short int long	

 1 byte 2 bytes 4 bytes 8 bytes	

	

Real: float double –22.51E6 	

 4 bytes 8 bytes 24.9	

	

Character: char 'V' '$' '\n' 	

 2 bytes	

	

Logical: 	
 boolean true false	

 1 bit	

 	

no
operators	

usual	

operators	

usual	

operators	

and &&	

or ||	

not !	
Single

quote	
Inside back cover, A-6..7	
 6	
6	

Casting among types	

(int) 3.2 casts double value 3.2 to an int	

any number
type	

any number
expression	

byte short int long float double	

narrow 	
 wider	

must be explicit cast, may truncate	

may be automatic cast	

Page A-9, inside back cover	

char is a number type: (int) 'V' (char) 86 	

Unicode representation: 86	
 'V'	

2	

7	
7	

Basic variable declaration	

5	
x	
 int	

Declaration of a variable: gives name of variable, type of value it
can contain	

int x;	
 Declaration of x, can contain an int value	

20.1	
area	

double	

double area;	
 Declaration of area, can contain a double
value	

int[] a;	
 Declaration of a, can contain a pointer to an
int array. We explain arrays later	

a	

int[]	

Page A-6	
 8	
8	

Assignment	

5	
x	
 int	

<variable> = <expression> ; 	

20.0	
area	

double	

Type of <variable> must be same as or
wider than type of <expression>	

x= area;	
 Illegal because type of x (int) is
narrower than type of area (double)	

Page A-6	

x= (int) area;	
 But you can cast the expression	

9	
9	

Two aspects of a programming language	

• Organization – structure	

• Procedural —commands to do something	

Example: Recipe book	

•  Organization: Several���
 options; here is one:���
 	
Appetizers ���

	
 list of recipes ���
	
Beverages ���
	
 list of recipes ���
	
Soups ���
	
 list of recipes ���
	
…	

•  Procedural: Recipe: sequence���
 of instructions to carry out	

structural���
objects	

classes���

interface	

inheritance	

procedural���
assignment

return	

if-statement	

iteration (loops)	

function call	

recursion	

	
miscellaneous ���

GUIs	

exception handling	

Testing/debugging	

Two objects of class Circle	

10	

Circle@ab14f324	

radius	
 4.1	

getRadius() { … }	

setRadius(double) { … }	

area() { … }	

Circle(double) { … }	

	

Circle@x1	

radius	
 5.3	

getRadius()	

setRadius(double)	

area()	

Circle(double)	

	

address in memory	

Name of object	

variable, called a field	

How we might write���
it on blackboard	

functions	

procedure	
 constructor	

we normally���
don’t write body	

See B-1..10	
 funcs, procs, constructors called methods	

public: Code everywhere can refer to Circle.	

Called access modifier	

Declaration of class Circle	

11	

/** An instance (object) represents a circle */	

public class Circle {	

 	

	

	

	

 	

}	

Multi-line comment starts with /* ends with */	

Precede every class
with a comment	

Put declarations of fields,
methods in class body:
{ … }	

Put class
declaration in���
file Circle.java	

Page B-5	

Access modifier private: can refer to radius only in code in���
 Circle. Usually, fields are private	

Declaration of field radius, in body of class Circle	

12	

	

 private double radius; // radius of circle. radius >= 0	

One-line comment starts with // ends at end of line	

Page B-5..6	

Always put a definition of a field and
constraints on it. 	

Collection of field definitions and
constraints is called the class invariant	

3	

Declaration of functions in class Circle	

13	

/** return radius of this Circle */	

public double getRadius() {	

 return radius;	

} 	

	

/** return area of Circle */	

public double area() {	

 return Math.PI*radius*radius; 	

}	

Always specify method,	

saying precisely what it does	

Function header syntax:���
close to Python/Matlab, but
return type double needed to
say what type of value is
returned	

public so functions can be
called from anywhere	

Page B-6..10	

Execution of	

 return expression;	

terminates execution of body
and returns the value of the
expression. The function call
is done.	

Called a getter:	

it gets value of a field	

Declaration of procedure in Circle	

14	

/** Set radius to r.	

 Precondition: r >= 0. */	

public void setRadius(double r) {	

 assert r >= 0;	

 radius= r;	

 }	

	

Tells user not to call method
with negative radius	

Procedure: doesn’t return val.
Instead of return type, use void	

Declaration of parameter r. Parameter: var
declared within () of a method header	

The call setRadius(-1); falsifies class invariant because radius
should be ≥ 0. User’s fault! Precondition told user not to do it.
Make method better by putting in assert statement.	

Execution of assert e; aborts program with error message if
boolean expression e is false.	

Page B-6..10	

Called a setter:	

It sets value in a field	

Declaration of constructor Circle	

15	

/** Constructor: instance with radius r.	

 Precondition: r >= 0 */	

public Circle(double r) {	

 assert r >= 0;	

 radius= r;	

}	

A constructor is called when a new object is created (we show
this soon).	

Purpose of constructor: initialize fields of new object so that
the class invariant is true.	

Constructor:	

1.  no return type	

2.  no void	

3.  Name of constructor is

name of class	

No constructor declared in a class? Java puts this one in,
which does nothing, but very fast: public <class-name>() {}	

Page B-15..16	

Creating objects	

16	

New-expression: new <constructor-call>	

Example: new Circle(4.1)	

Evaluation is 3 steps:	

 1. Create new object of the given class, giving it a name.	

 Fields have default values (e.g. 0 for int)	

 2. Execute <constructor-call> —in example, Circle(4.1)	

 3. Give as value of the expression the name of new object.	

Circle c;	

c= new Circle(4.1);	

c	
 null	

Evaluate new expression:	

Circle@ab14f324	

radius	
 0.0	

getRadius() { … }	

setRadius(double) { … }	

area() { … }	

Circle(double) { … }	

	

1. Create object	

2. Execute constructor call	

4.1	

3. Value of exp:	
Circle@ab14f324	

	
Finish assignment	

Circle@ab14f324	

	

Page B-3 	

Consequences	

17	

1.  Circle can be used as a type, with	

 set of values: null and names of objects of class Circle	

2.  Objects are accessed indirectly. A variable of type Circle

contains not the object but a pointer to it (i.e. its name)	

3.  More than one variable can contain the name of the same

object. Called aliasing	

 Example: Execute���
 Circle d= c;	

 and variables d and c contain	

 the same value.	

Circle@ab14f324	

radius	
 0.0	

getRadius() { … }	

setRadius(double) { … }	

area() { … }	

Circle(double) { … }	

	

c	
 Circle@ab14f324	

	

Circle@ab14f324	

	

	

d	

Referencing components of c	

18	

Suppose c and d contain the name Circle@ab14f324	

—they contain pointers to the object.	

Circle@ab14f324	

radius	
 0.0	

getRadius() { … }	

setRadius(double) { … }	

area() { … }	

Circle(double) { … }	

	

c	
 Circle@ab14f324	

	

Circle@ab14f324	

	

	

d	

If field radius is public, use c.radius to reference it	

Examples: c.radius = c.radius + 1; d.radius= c.radius + 3; 	

Call function area using	

c.area() or d.area()	

Call procedure setRadius to set
the radius to 6 using	

c.setRadius(6); or
d.setRadius(6);	

4	

Value null	

19	

Value null denotes the absence of an object name or pointer	

Circle@ab14f324	

radius	
 0.0	

getRadius() { … }	

setRadius(double) { … }	

diameter() { … }	

Circle(double) { … }	

	

c	
 Circle@ab14f324	

	
null	

	

	

d	

c= new Circle(0);	

d= null;	

c.area() has value 0.0	

	

d.area() gives a “null-pointer
exception” and program
execution aborts (stops)	

Packages	

20	

package: set of related classes that appear in the same
directory on your hard drive.	

http://docs.oracle.com/javase/7/docs/api/	

Contains specifications of all packages
that come with Java. Use it often.	

Page B-25 	

You will not write
your own package
right now, but you
will use packages	

Package java.io contains classes used for input/output. To be
able to use these classes, put this statement before class
declaration: import java.io.*;	
 * Means import all���

classes in package	

Package java.lang does not need to be imported.	

Has many useful classes: Math, String, wrapper classes …	

Static variables and methods	

21	

static: component does not go in objects. Only one copy of it 	

Circle@x1	

Components as ���
before, but	

not PI, di	

public class Circle {	

 declarations as before	

 public static final double PI= 3.141592653589793;	

 /** return area of c */	

 public static double di(Circle c) {	

 return Math.PI * c.radius * c.radius;	

 }	

}	

3.1415…	

	

	

PI	

di(Circle) {..}	

	

	
Circle@x2	

Components as ���
before, but	

not PI, di	

To use static PI and di:	

Circle.PI	

Circle.di(new Circle(5))	

final: PI can’t be changed	

It’s a constant	

Here’s PI and di	

Page B-19..21 	

Overloading	

22	

Possible to have two or more methods with same name	

/** instance represents a rectangle */	

public class Rectangle {	

 private double sideH, sideV; // Horiz, vert side lengths	

 /** Constr: instance with horiz, vert side lengths sh, sv */	

 public Rectangle(double sh, double sv) {	

 sideH= sh; sideV= sv;	

 }	

 /** Constructor: square with side length s */	

 public Rectangle(double s) {	

 sideH= s; sideV= s;	

 }	

 …	

}	

Lists of parameter types
must differ in some way	

Page B-21 	

Use of this	

23	

public class Circle {	

 private double radius;	

 /** Constr: instance with radius radius*/	

 public Circle(double radius) {	

 radius= radius;	

 }	

Doesn’t work because
both occurrences of
radius refer to parameter	

Page B-28 	

this evaluates to the name���
of the object in which is appears	

Memorize this!	

/** Constr: instance with radius radius*/	

public Circle(double radius) {	

 this.radius= radius;	

}	

This works	

Avoid duplication: Call one constructor from other ���
Can save a lot if there are lots of fields	

24	

/** Constr: instance with horiz, vert sidelengths sh, sv */	

public Rectangle(double sh, double sv) { … }	

/** Constr: square with side length s */	

public Rectangle(double s) {	

 sideH= s; sideV= s;	

}	

First alternative	

Page C-10 	

this(…) must be
first statement in
constructor body	

/** Constr: square with side length s */	

public Rectangle(double s) {	

 this (s, s);	

}	

Better alternative	

Call on another
constructor in same
class: use this instead
of class name	

5	

Subclasses	

25	

Situation. We will have classes Circle, Rectangle, others:	

Circle: field radius: radius of circle	

Rectangle: sideH, sideV: horizontal, vertical side lengths.	

Want to place each object in the plane: A point (x, y) gives top-
left of a rectangle or top-left of “bounding box” of a circle.	

(1, 2)	

sideV	

sideH	

(20, 2)	

radius	

One way: add fields x and y to Circle, Rectangle, other
classes for shapes. Not good: too much duplication of effort.	

Better solution: use subclasses	

Page C-5..14 	

/** An instance represents a shape at a point in the plane */	

public class Shape {	

 private double x, y; // top-left point of bounding box	

 /** Constructor: a Shape at point (x1, y1) */	

 public Shape (double x1, double y1) {	

 x= x1; y= y1;	

 }	

 /** return x-coordinate of bounding box*/	

 public double getX() {	

 return x;	

 }	

 /** return y-coordinate of bounding box*/	

 public double getY() {	

 return y;	

 }	

}	

Class Shape	

26	

Subclass and superclass	

27	

/** An instance represents circle at point in plane */	

public class Circle extends Shape {	

 all declarations as before	

}	

Circle@x1	

radius	

getRadius()	

setRadius(double)	

area() Circle(double)	

	

5.3	

x	
 20	
 y	
 2	

Shape(…) getX() getY()	

Circle	

Shape	

Circle is subclass of Shape	

Shape is superclass of Circle 	

Circle inherits all
components of Shape: they
are in objects of class Circle.	

put Circle components below	

(Circle is subclass)	

put Shape components above	

Modify Circle constructor	

28	

/** An instance represents circle at point in plane */	

public class Circle extends Shape {	

 all declarations as before except	

 /** Constructor: new Circle of radius r at (x, y)*/	

 public Circle(double r, double x, double y) {	

 super (x, y);	

 radius= r;	

 }	

}	

5.3	

y	

Circle@x1	

radius	

getRadius()	

setRadius(double)	

area() Circle(double)	

	

x	
 20	
 2	

Shape(…) getX() getY()	

Circle	

Shape	

Principle: initialize superclass fields
first, then subclass fields.	

Implementation: Start constructor
with call on superclass constructor	

how to call constructor in superclass	

y	

5.3	

Page C-9 	

Default Constructor Call	

29	

/** An instance represents circle at point in plane */	

public class Circle extends Shape {	

 all declarations as before except	

 /** Constructor: new Circle of radius r at (x, y)*/	

 public Circle(double, r, x, y) {	

 radius= r;	

 }	

}	

5.3	

y	

Circle@x1	

radius	

getRadius()	

setRadius(double)	

area() Circle(double)	

	

x	
 20	
 2	

Shape(…) getX() getY()	

Circle	

Shape	

Rule. Constructor body must begin���
with call on another constructor.	

If missing, Java inserts this:	

 super();	

	

Consequence: object always has a constructor, but it may not be
one you want. In this case, error: Shape doesn’t have Shape()	

y	

5.3	

Object: superest class of them all	

30	

Class doesn’t explicitly extend another one? It automatically
extends class Object. Among other���
components, Object contains:	

5.3	

y	

Constructor: public Object() {}	

Circle@x1	

radius	

getRadius()	

setRadius(double)	

area() Circle(double)	

	

x	
 20	
 2	

Shape(…) getX() getY()	

Circle	

Shape	

Object()	

Equals(Object) toString()	

Object	

c	
 Circle@x1	

	

Circle@x1	

	

	

d	

/** return name of object */	

public String toString()	

c.toString() is “Circle@x1”	

/** return value of “this object and ob	

 are same”, i.e. of this == ob */	

public boolean equals(Object ob)	

c.equals(d) is true	

c.equals(new Circle(…)) ���
 is false	
Page C-18 	

y	

5.3	

6	

Example of overriding: toString	

31	

Override an inherited method: define it in subclass	

5.3	

y	

Circle@x1	

radius	

getRadius()	

setRadius(double)	

area() Circle(double)	

	

x	
 20	
 2	

toString()	

Shape(…) getX() getY()	

Circle	

Shape	

Object()	

Equals(Object) toString()	

Object	

c	
 Circle@x1	

	
Page C-12 	

y	

5.3	

/** return representation of this */	

public @Override String toString() {	

 return “(“ + x + “, ” + y + “)”;	

}	

Put in class Shape	

c.toString() calls overriding method,	

one nearest to bottom of object	

c.toString() is “(20, 2)”	

Do not override a field! Useless.	

Called shadowing. Not used in 2110	

Don’t need @Override.	

Helps catch errors. Use it.	

toString() is special in Java	

32	

5.3	

y	

Circle@x1	

radius	

getRadius()	

setRadius(double)	

area() Circle(double)	

	

x	
 20	
 2	

toString()	

Shape(…) getX() getY()	

Circle	

Shape	

Object()	

Equals(Object) toString()	

Object	

c	
 Circle@x1	

	

Page B-17 	

y	

5.3	

Good debugging tool: Define toString in every class you write,
give values of (some of) fields of object.	

System.out.println(“c is: ” + c);	

prints	

 “c is (20, 2)”	

In some places where String is
expected but class name appears,
Java automatically calls toString.	

/** return representation of this */	

public String toString() {	

 return “(“ + x + “, ” + y + “)”;	

}	

Put in class Shape	

Calling overridden method	

33	

5.3	

y	

Circle@x1	

radius	

getRadius()	

setRadius(double)	

area() Circle(double)	

	

x	
 20	
 2	

toString()	

Shape(…) getX() getY()	

Circle	

Shape	

Object()	

Equals(Object) toString()	

Object	

c	
 Circle@x1	

	
Page C-12 	

y	

5.3	

c.toString() is 	

 “Circle radius 5.3 at (20, 3)”	

Within method of class, use super.
to call overridden method —one in a
higher partition, in some superclass	

/** return representation of this */	

public @Override String toString() {	

 return “Circle radius ” + 	

 radius + “ at ” +	

 super.toString();	

}	

Put in class Circle	

toString()	

Casting among class-types	

34	

5.3	

y	

Circle@x1	

radius	

getRadius()	

setRadius(double)	

area() Circle(double)	

	

x	
 20	
 2	

toString()	

Shape(…) getX() getY()	

Circle	

Shape	

Object()	

Equals(Object) toString()	

Object	

Page C-23, but not good 	

y	

5.3	

(int) (5.0 / 3) // cast value of expression from double to int	

(Shape) c // cast value in c from Circle to Shape	

Explain, using this situation	

Circle c= new Circle(5.3, 2);	

Shape d= (Shape) c;	

Object e= (Object) c;	

c	
 Circle@x1	

	
 Circle	

d	
 Circle@x1	

	
 Shape	

e	
 Circle@x1	

	
 Object	

Type of
variable	

Class casting: costs nothing at	

runtime, just provides different	

perspective on object.	

Casting among class-types	

35	

c	
 Circle@x1	

	

Page C-23, but not good 	

Important: Object Circle@x1 has partitions for Object, Shape,
Circle. Can be cast only to these three classes.	

	

Circle@x1 is a Circle, Shape, Object	

	

Cast (String) c is illegal because	

Circle@x1 is not a String —does not	

have a partition for String	

 	

Circle	

d	
 Circle@x1	

	
 Shape	

e	
 Circle@x1	

	
 Object	

Circle@x1	

Circle	

Shape	

Object	
…	

…	

…	

wider	

	

	

narrower	

(Object) c widening cast, may be	

 done automatically	

(Circle) e narrowing cast, must be	

 done explicitly	

Different perspectives of object	

36	

Page C-23,	

not good 	

e looks at Circle@x1 from perspective of class Object.	

e.m(…) syntactically legal only if method m(…)	

is in Object partition.	

Example: e.toString() legal	

 e.getX() illegal.	

d	
 Circle@x1	

	
 Shape	

e	
 Circle@x1	

	
 Object	

Circle@x1	

radius	

getRadius()	

setRadius(double)	

area() Circle(double)	

	

x	
 20	
 2	

toString()	

Shape(…) getX() getY()	

Circle	

Shape	

Object()	

Equals(Object) toString()	

Object	

y	

5.3	

d looks at Circle@x1 from perspective	

Of Shape.	

d.m(…) syntactically legal only if	

m(…) is in Shape or Object partition.	

Example: e.area() illegal	

7	

More on the perspective	

37	
Shape[]	

b is an array of Shape objects	

b[i] contains name of (pointer to) Shape object	

Circle@x	

…	

area()	

…	

Circle	

Shape	

…	
 Object	

b	

Rect@y	

…	

area()	

…	

Rect	

Shape	

…	
 Object	

Trian@w	

…	

area()	

…	

Trian	

Shape	

…	
 Object	

0 1 2 3 4 … 	

…	

Trian@z	

…	

area()	

…	

Trian	

Shape	

…	
 Object	

b[3] has type Shape. Is b[3].area() legal?	

NO. Have to do	

 ((Trian) b[3]).area()	

	

NOT GOOD!!!	

More on the perspective	

38	
Shape[]	

Better: Declare area() in class Shape	
 Circle@x	

…	

area()	

…	

Circle	

Shape	

…	
 Object	

b	

Rect@y	

…	

area()	

…	

Rect	

Shape	

…	
 Object	

Trian@z	

…	

area()	

…	

Trian	

Shape	

…	
 Object	

area()	
area()	

area()	

0 1 2 3 4 … 	

…	

Trian@z	

…	

area()	

…	

Trian	

Shape	

…	
 Object	

public double area() { return 0.0; }	

Now, b[3].area() is syntactically legal 	

calls function area in���
partition Trian	

area()	

E.g. overriding function equals (an automatic cast)	

39	

/** return true iff ob is a Shape and	

 ob and this object at same point */	

public boolean equals(Object ob) {	

 if (!(ob instanceof Shape)) {	

 return false;	

 }	

 Shape s= (Shape) ob;	

 return x == s.x && y == s.y;	

}	

Circle@x1	

radius	

getRadius()	

setRadius(double)	

area() Circle(double)	

	

x	
 20	
 2	

toString()	

Shape(…) getX() getY()	

Circle	

Shape	

Object()	

Equals(Object) toString()	

Object	

y	

5.3	

f	
 C@????	

	

d	
 Circle@x1	

	
 Shape	
 C	

Store arg f in parameter ob.
Automatic cast from C to Object
because ob has type Object	

ob	
 C@????	

	
 Object	

Call d.equals(f)	

toString()	

E.g. overriding function equals (instanceof)	

40	

/** return true iff ob is a Shape and	

 ob and this object at same point */	

public boolean equals(Object ob) {	

 if (!(ob instanceof Shape)) {	

 return false;	

 }	

 …	

}	

y	

5.3	

New operator: instanceof	

c instanceof C true iff object
c has a partition for class C	

ob	
 C@????	

	
 Object	

Spec says return false if ob not a Shape. 	

That’s what if-statement does	
 Circle@x1	

radius	

getRadius()	

setRadius(double)	

area() Circle(double)	

	

x	
 20	
 2	

toString()	

Shape(…) getX() getY()	

Circle	

Shape	

Object()	

Equals(Object) toString()	

Object	

y	

toString()	

E.g. overriding function equals (need for cast)	

41	

/** return true iff ob is a Shape and	

 ob and this object at same point */	

public boolean equals(Object ob) {	

 if (!(ob instanceof Shape)) {	

 return false;	

 }	

 Shape s= (Shape) ob;	

 return x == s.ob && y == ob.y;	

}	

y	

5.3	

ob	
 C@????	

	
 Object	

Need to test ob.x, ob.y —these are
illegal! So cast ob to Shape. Then test	

Circle@x1	

radius	

getRadius()	

setRadius(double)	

area() Circle(double)	

	

x	
 20	
 2	

toString()	

Shape(…) getX() getY()	

Circle	

Shape	

Object()	

Equals(Object) toString()	

Object	

y	

s	
 C@????	

	
 Shape	

toString()	

42	

Motivating abstract classes	

42	
Shape[]	

Shape has fields (x, y) to contain the position	

of the shape in the plane. Each subclass describes
some enclosed kind of shape with an area	

Circle@x	

…	

area()	

…	

Circle	

Shape	

…	
 Object	

b	

Rect@y	

…	

area()	

…	

Rect	

Shape	

…	
 Object	

Trian@z	

…	

area()	

…	

Trian	

Shape	

…	
 Object	

0 1 2 3 4 … 	

…	

Trian@z	

…	

area()	

…	

Trian	

Shape	

…	
 Object	

b[i].area() is illegal, even though each	

Subclass object has function area()	

Don’t want to cast down.
Instead, define area() in
Shape	

8	

Motivating abstract classes	

43	
Shape[]	

area() in class Shape doesn’t return useful value	
 Circle@x	

…	

area()	

…	

Circle	

Shape	

…	
 Object	

b	

Rect@y	

…	

area()	

…	

Rect	

Shape	

…	
 Object	

Trian@z	

…	

area()	

…	

Trian	

Shape	

…	
 Object	

area()	
area()	

area()	

0 1 2 3 4 … 	

…	

Trian@z	

…	

area()	

…	

Trian	

Shape	

…	
 Object	

public double area() { return 0.0; }	

Problem: How to force
subclasses to override area?	

Problem: How to
ban creation of	

Shape objects	

area()	

Abstract class and method solves both problems	

44	

public abstract class Shape {	

	

 public abstract double area();	

 …	

}	

Abstract class. Means can’t create object of Shape:	

 new Shape(…) syntactically illegal	

Abstract method. Means it must be
overridden in any subclass	

Place abstract method
only in abstract class.	

	

 Body is replaced by ;	

Java has 4 kinds of variable	

45	

public class Circle {	

 private double radius; 	

	

 private static int t;	

	

 public Circle(double r) {	

 double r1= r;	

 radius= r1;	

}	

Field: declared non-static. Is in
every object of class. Default initial
val depends on type, e.g. 0 for int	

Class (static) var: declared static.
Only one copy of it. Default initial
val depends on type, e.g. 0 for int	

Parameter: declared in () of method header.
Created during call before exec. of method body,
discarded when call completed. Initial value is
value of corresp. arg of call. Scope: body.	

Local variable: declared in method body. Created during call
before exec. of body, discarded when call completed. No initial
value. Scope: from declaration to end of block.	

Page B-19..20, B-8 	

Wrapper classes (for primitive types)���
in package java.lang. Need no import���

	

46	

object of class Integer “wraps” one value
of type int.	

Object is immutable: can’t change its
value.	

Integer@x1	

???	
 5	

Integer(int)
Integer(String) 	

toString()
equals(Object)
intValue()	

Static components:	

MIN_VALUE MAX_VALUE	

toString(int) toBinary(int)	

valueOf(String) parseInt(String)	

Reasons for wrapper class Integer:	

1.  Allow treating an int value as an object.	

2.  Provide useful static variables, methods	

Integer.MIN_VALUE:
smallest int value: –231	

Page A-51..54 	

Why “wrapper” class?	

47	

Integer@x1	

???	
 5	

sandwich wrapper	
 int wrapper	
wriggle wrapper	

A wrapper wraps something	

Wrapper classes (for primitive types)	

48	

Wrapper class for each primitive type. Want to treat prim.
value as an object? Just wrap it in an object of wrapper class! 	

Primitive type Wrapper class	

int 	
 	
 Integer	

long 	
 	
 Long	

float 	
 	
 Float	

double	
 	
 Double	

char 	
 	
 Character	

Boolean 	
 Boolean	

Wrapper class has:	

• Instance methods, e.g.
equals, constructors,
toString,	

• Useful static constants and
methods.	

Integer k= new Integer(63); int j= k.intValue();	

Page A-51..54 	

9	

Wrapper-class autoboxing in newer Java versions	

49	

Instead of Integer k= new Integer(63);	

do Integer k= 63;	

Autoboxing: process of automatically creating a wrapper-
class object to contain a primitive-type value. Java does it
in many situations:	

This autoboxes the 63	

Auto-unboxing: process of automatically extracting the
value in a wrapper-class object. Java does it in many
situations:	

Extract the value from k, above:	

Instead of int i= k.intValue();	

do int i= k;	
 This auto-unboxes value in k	

Page A-51..54 	

Array	

50	

Array: object. Can hold a fixed number of values
of the same type. Array to right: 4 int values.	
 5	

7	

4	

-2	

Basic form of a declaration:	

 <type> <variable-name> ;	

A declaration of x.	

Does not create array, only declares x.
x’s initial value is null.	

int[] x ;	

0	

1	

2	

3	

Elements of array are numbered: 0, 1, 2, …, x.length–1;���
	

The type of the array:	

 int[]	

Variable contains name of the array.	
 x []@x3	

int[]	

[]@x3	

Array length	

51	

Array length: an instance field of the array.	

This is why we write x.length, not x.length()	
 5	

7	

4	

-2	

a0	

0	

1	

2	

3	

Length field is final: cannot be changed.	

Length remains the same once the array has been
created.	

We omit it in the rest of the pictures.	

x a0	
 int[]	

length 4	

The length is not part of the array type.	

The type is int[]	

An array variable can be assigned arrays of different lengths.	

52	

Arrays	
 int[] x ;	
 x	
 null	

int[]	

0	

0	

0	

0	

a0	

x= new int[4];	
 0	

1	

2	

3	

Create array object of length 4,
store its name in x	

x	
 a0	

int[]	

-4	

0	

6	

-8	

a0	

0	

1	

2	

3	

Assign 2*x[0], i.e. -8, to x[3]���
Assign 6 to x[2] 	

int k= 3;	

x[k]= 2* x[0];	

x[k-1]= 6; 	

	

x[2]= 5; 	

x[0]= -4;	
 -4	

0	

5	

0	

a0	

0	

1	

2	

3	

Assign 5 to array element 2 and ���
-4 to array element 0	

x[2] is a reference to element
number 2 of array x	

53	

Array initializers	

Instead of 	

	
int[] c= new int[5];	

	
c[0]= 5; c[1]= 4; c[2]= 7; c[3]= 6; c[4]= 5;	

	

Use an array initializer:	

	
int[] c= new int[] {5, 4, 7, 6, 5};	

5	

4	

7	

6	

5	

a0	

array initializer: gives values to be in the
array initially. Values must have the same
type, in this case, int. Length of array is
number of values in the list	

No expression
between
brackets [].	

54	

Ragged arrays: rows have different lengths ���
	

b a0	
 a0	

r0	

17	

13	

19	

0
r1	

28	

95	

0
r0	

r1	

0	

1	

int[][] b; Declare variable b of type int[][] 	

b= new int[2][] Create a 1-D array of length 2 and store its	

	
name in b. Its elements have type int[] (and start as null).	

b[0]= new int[] {17, 13, 19}; Create int array, store its name
	
in b[0].	

b[1]= new int[] {28, 95}; Create int array, store its name in b[1].	

1	

2	

1	

10	

/** = first n rows of Pascal’s triangle. Precondition: 0 ≤ n */	

public static int[][] pascalTriangle(int n) {	

 int[][] b= new int[n][]; // array with n rows (can be 0!)	

 // inv: rows 0..i-1 have been created	

 for (int i= 0; i != b.length; i= i+1) {	

 b[i]= new int[i+1]; // Create array for row i	

 // Calculate row i of Pascal's triangle	

 b[i][0]= 1; 	

 // inv: b[i][0..j-1] have been created	

 for (int j= 1; j < i; j= j+1) {	

 b[i][j]= b[i–1][j–1] + b[i–1][j];	

 }	

 b[i][i]= 1;	

 }	

 return b;	

}	
 55	

Pascal’s Triangle���
in a ragged array���
	

 1

 1 1

 1 2 1

 1 3 3 1

 1 4 6 4 1

1 5 10 10 5 1 	

Generic types —made as simple as possible	

56	

public class Box {	

 private Object object;	

 public void set(Object ob) {	

 object = ob; 	

 }	

 public Object get() { 	

 return object;���
 } …	

Suppose you use Box to hold 	

only Integer objects 	

When you get value out, you
have to cast it to Integer to use it. 	

Generic types: a way, when
creating an object of class
Box, to say that it will hold
only Integer objects and
avoid the need to cast. 	

Box b= new Box();	

b.set(new Integer(35));	

Object x= b.get();	

… (Integer) x …	

Basic class Box	

57	

parameter T (you choose name)	

Replace type Object
everywhere by T	

public class Box {	

 private Object object;	

 public void set(Object ob) {	

 object = ob; 	

 }	

 public Object get() { 	

 return object;���
 } …	

New code	

Box<Integer> b= new Box<Integer>();	

b.set(new Integer(35));	

Integer x= b.get();	

public class Box<T> {	

 private T object;	

 public void set(T ob) {	

 object = ob; 	

 }	

 public T get() { 	

 return object;���
 } …	

Written using generic type	

58	

Can extend only one class	

public class C extends C1, C2 { 	

 public void p() {	

 …; h= m(); …	

 }	

}	

public class C1 {	

 public int m() {	

 return 2;	

 }	

 …	

}	

public class C2 {	

 public int m() {	

 return 3;	

 }	

 …	

}	

if we allowed multiple
inheritance, which m used?	

59	

Can extend only one class	

public class C extends C1, C2 { … }	

public abstract class C1 {
 public abstract int m();
 public abstract int p();
}

public abstract class C2 {
 public abstract int m();
 public abstract int q();
}

Use abstract classes? Seems OK, because method bodies not
given!	

But Java does not allow this.	

Instead, Java has a construct, the interface, which is like an
abstract class.	

60	

Interface declaration and use of an interface	

public class C implements C1, C2 {	

…	

}	
 public interface C1 {
 int m();
 int p();
 int FF= 32;
}

public interface C2 {
 int m();
 int q();
}

Methods declared in	

 interface are automatically public,	

 abstract	

Use of public, abstract is optional	

Use ; not { … }	

Field declared in	

 interface automatically	

 public, static, final	

Must have initialization	

Use of public, static, final
optional	

Eclipse: Create new interface? Create new
class, change keyword class to interface	

C must override all
methods in C1 and C2	

11	

Casting with interfaces	

61	

class B extends A implements C1, C2 { … }	

interface C1 { … }	

interface C2 { … }	

class A { … }	

b= new B();	

What does object b look like?	

A	

Object	

B	

Draw b like this, showing���
only names of partitions:	

Add C1, C2 as new dimensions:	

C2	
C1	

Object b has 5 perspectives. Can
cast b to any one of them at any
time. Examples:	

(C2) b (Object) b	

(A)(C2) b (C1) (C2) b	

 	

You’ll see such casting later	

62	

6
2

Look at: interface java.lang.Comparable

/** Comparable requires method compareTo */
public interface Comparable<T> {

 /** = a negative integer if this object < c,
 = 0 if this object = c,
 = a positive integer if this object > c.
 Throw a ClassCastException if c cannot
 be cast to the class of this object. */
 int compareTo(T c);

}

Classes that
implement
Comparable	

Boolean	

Byte	

Double	

Integer	

…	

String	

BigDecimal	

BigInteger	

Calendar	

Time	

Timestamp	

…	

	

	

	

We haven’t talked about Exceptions yet.	

Doesn’t matter here.	

When a class implements Comparable it
decides what < and > mean!	

Note: Class
implements
Comparable	

63	

/** An instance maintains a time of day */ 	

class TimeOfDay implements Comparable<TimeOfDay> { 	

 int hour; // range 0..23 	

 int minute; // minute within the hour, in 0..59 	

 /** = -1 if this time less than ob’s time, 0 if same, 	

 1 if this time greater than ob’s time */	

 public int compareTo(TimeOfDay ob) {	

 if (hour < ob.hour) return -1;	

 if (hour > ob.hour) return 1;	

 // {hour = ob.hour} 	

 if (minute < ob.minute) return -1;	

 if (minute > ob.minute) return 1;	

 return 0;	

 }	

}	

Note TimeOfDay ���
used here	

Class has lots of other methods, not shown. Function
compareTo allows us to compare objects, e.g. can use
to sort an array of TimeOfDay objects.	
 64	

/** Sort array b, using selection sort */	

public static void sort(Comparable[] b) {	

 // inv: b[0..i-1] sorted and contains smaller elements	

 for (int i= 0; i < b.length; i= i+1) {	

 // Store in j the position of smaller of b[i..]	

 int j= i;	

 // inv: b[j] is smallest of b[i..k-1]	

 for (int k= i+1; k < b.length; k= k+1) {	

 if (b[k].compareTo(b[j]) < 0) j= k;	

 }	

 Comparable t= b[i]; b[i]= b[j]; b[j]= t;	

 }	

 }	

}	

TimeOfDay[] b;	

…	

sort(b)	

Beauty of interfaces: sorts an array C[]
for any class C, as long as C implements
interface Comparable.

Note use of
function
compareTo	

65	

Division by 0 causes an “Exception to be thrown”.
program stops with output:	

public static void main(String[] args) {	

 int b= 3/0; 	

 }	

Exception in thread "main" ���
 java.lang.ArithmeticException: / by zero	

	
at C.main(C.java:7)	

Exceptions	

The “Exception”
that is “thrown”	
Happened in C.main on line 7	

This is line 7	

66	

parseInt throws a NumberFormatException if the arg is
not an int (leading/trailing spaces OK)	

public static void main(String[] args) {	

 int b= Integer.parseInt("3.2");	

 }	

See stack of calls that are not completed!	

Exception in thread "main" java.lang.NFE: For input string: "3.2"	

 at java.lang.NFE.forInputString(NFE.java:48)	

 at java.lang.Integer.parseInt(Integer.java:458)	

 at java.lang.Integer.parseInt(Integer.java:499)	

 at C.main(C.java:6)	

Used NFE instead of
NumberFormatException

to save space	
Output is:	

Found error
on line 48	

called from
line 499	

called from
C.main, line 6	

3.2 not
an int	

called from
line 458	

12	

67	

Exceptions and Errors	

In package java.lang: class Throwable:	

	

	

	

	

Throwable@x1	

“/ by zero”	
detailMessage	

	

getMessage()	

Throwable()
Throwable(String)	

When some kind of error
occurs, an exception is
“thrown” —you’ll see
what this means later.	

An exception is an instance
of class Throwable	

(or one of its subclasses) 	

	

Two constructors in class Throwable. Second one
stores its String parameter in field detailMessage.	

68	

Exceptions and Errors	

So many different kind of exceptions that���

we have to organize them.	

	

	

	

	
 “/ by zero”	
 detailMessage	

getMessage()	

Exception	

RuntimeException	

ArithmeticException	

Throwable	

Exception	
 Error	

RuntimeException	

ArithmeticException	

Do nothing
with these	

 You can
"handle"

these	

Throwable() Throwable(String)	

Exception() Exception(String)	

RunTimeE…() RunTimeE…(…)	

Arith…E…() Arith…E…(…)	

Throwable@x1	

Subclass always has: 2
constructors, no fields, no
other methods.���
Constructor calls superclass
constructor.	

69	

	

03 public class Ex { 	

04 public static void main(…) {	

05 second();	

06 }	

07	

08 public static void second() {	

09 third();	

10 }	

11	

12 public static void third() {	

13 int x= 5 / 0;	

14 }	

15 }	

Class:	

Call	

	

 	

 Output	
	

ArithmeticException: / by zero	

 at Ex.third(Ex.java:13)	

 at Ex.second(Ex.java:9)	

 at Ex.main(Ex.java:5)	

 at sun.reflect.NativeMethodAccessorImpl.invoke0(Native Method)	

 at sun.reflect.NativeMethodAccessorImpl.invoke(…)	

 at sun.reflect.DelegatingMethodAccessorImpl.invoke(…)	

 at java.lang.reflect.Method.invoke(Method.java:585)	

	

	

AE	

a0	

	

	

AE	

a0	

	

	

AE	

a0	

Ex.first();	

Creating and throwing and Exception	

Object a0 is thrown
out to the call.
Thrown to call of
main: info printed	

70	

	

03 public class Ex { 	

04 public static void main(…) {	

05 second();	

06 }	

07	

08 public static void second() {	

09 third();	

10 }	

11	

12 public static void third() {	

13 throw new ���
 ArithmeticException���
 (“I threw it”);	

14 }	

15 }	

Class:	

Call	

	

 	

 Output	

	

ArithmeticException: / by zero	

 at Ex.third(Ex.java	

 at Ex.second(Ex.java:9)	

 at Ex.main(Ex.java:5)	

 at sun.reflect.NativeMethodAccessorImpl.invoke0(Native Method)	

 at sun.reflect.NativeMethodAccessorImpl.invoke(…)	

 at sun.reflect.DelegatingMethodAccessorImpl.invoke(…)	

 at java.lang.reflect.Method.invoke(Method.java:585)	

	

	

AE	

a0	

	

	

AE	

a0	

	

	

AE	

a0	

Ex.first();	

Throw statement	

Same thing, but
with an explicit
throw statement	

71	

/** An instance is an exception */	

public class OurException extends Exception {	

 	

 /** Constructor: an instance with message m*/	

 public OurException(String m) {	

 super(m);	

 }	

 	

 /** Constructor: an instance with no message */	

 public OurException() {	

 super();	

 }	

}	

How to write an exception class	

72	

The “throws” clause 	

/** Class to illustrate exception handling */	

public class Ex {	

 public static void main() throws OurException {	

 second();	

 }	

 public static void second() throws OurException {	

 third();	

 }	

 public static void third() throws OurException {	

 throw new OurException("mine");	

 }	

	

If Java asks for a throws clause, insert it.	

Otherwise, don’t be concerned with it.	

Throw Exception
that is not subclass of

RuntimeException?
May need throws

clause	

13	

73	

Try statement: catching a thrown exception	

try { 	

 statements	

}	

catch (class-name e) {	

 statements	

}	

Execution: Execute the try-block. Three cases arise: The try-block:	

1. Does not throw an exception: End of execution.	

2. Throws a class-name exception: execute the catch-block
statements, with e containing the thrown exception.	

3. Throws other exception: throw the object to the statement that
called m.	

try-block	

class-name that is a	

subclass of Throwable	

catch-block	

Assume
statement

occurs in a
method m	

Junit testing class	

74	

A Junit testing class is a class that contains procedures that are
called to do “unit testing”. The units are generally methods in
objects.	

	

Eclipse has a simple way to create such a class:	

	
1. In Package Explorer, select src directory for project	

	
2. Use menu item File à New à Junit Test Case	

	
3. If the class you are texting is C, name the file Ctester	

	

	

Junit testing class looks like this:	

75	

import static org.junit.Assert.*;	

import org.junit.Test;	

	

public class CTester {	

	

 @Test	

 public void test() {	

	

}	
 Put as many different test() method, with mnemonically

chosen names.	

	

To call all such methods, select file CTester in the
Package Explorer and then use menu item Runà Run	

What to put in a test method	

76	

…	

public class CTester {	

 @Test	

 public void testFail() {	

 fail("Not yet implemented");	

	

 @Test	

 public void testM() {	

 assertEquals(5, C.m(30));	

 assertEquals(20, C.m(0));	

	

 	

	

}	

Causes execution of
method call to abort
with a message	

Testing 2 calls on
static method m of C.	

Put in as many tests as
you need	

assertEquals(expected value, computed value);	

To test a new class	

77	

To test a class, it is best to	

1.  Write a method a test procedure to test whether the

constructor sets all fields properly, so that the class
invariant is true. This will also test the getters. (see
next slide)	

2.  Write a test procedure to test whether the setters do
their job correctly.	

3.  Write a test procedure to test whether toString() is
correct.	

4.  Write a separate method for each of the other
constructors (if there are more)	

5.  Write other test procedures as is necessary to test
other methods.	

Testing a constructor	

78	

…	

public class CTester {	

 @Test	

 public void testConstructor() {	

 C c1= new C(5, 7);	

 assertEquals(5, c1.getF1());	

 assertEquals(7, c1.getF2());	

 assertEquals(20, c1.getF3());	

 }	

Assume C has 3 fields, f1,
f2, and f3, with
appropriate getter
methods.	

	

Assume the 5 is for f1, the
7 is for f2, and f3 is to be
initialized to 20.	

	

This code creates a new
objects and tests whether
all fields are properly set.	

Note: purpose of procedure is
to test constructor, but the
method also tests the getter
methods.	

14	

Testing setter methods	

79	

…	

public class CTester {	

 @Test	

 public void testSetters() {	

 C c1= new C(5, 7);	

 c1.setF1(6);	

 assertEquals(6, c1.getF1());	

	

 s2.setF2(-5);	

 assertEquals(-5, c1.getF2()); 	

}	

Assume C has 3 fields, f1,
f2, and f3, with
appropriate getter and
setter methods.	

	

Warning: don’t use static components	

80	

While it is possible to use fields or static variables in a Junit
test class, we advise against it at this point. You do not
know when they are initialized (before the call of each test
procedure, or once when you use Run à Run, or once
when class if first created, whatever).	

	

Just use local variables where needed in a testing class. 	

Enums (or enumerations)	

81	

public enum Suit {Clubs, Diamonds, Hearts, Spades}	

An enum: a class that lets you create mnemonic names for
entities instead of having to use constants like 1, 2, 3, 4	

	

The declaration below declares a class Suit.	

After that, in any method, use Suit.Clubs, Suit.Diamonds, etc.
as constants.	

could be private,	

or any access
modifier	

new	

keyword	

The constants of the class
are Clubs, Diamonds,
Hearts, Spades	

Testing for an enum constant	

82	

public enum Suit {Clubs, Diamonds, Hearts, Spades}	

Suit s= Suit.Clubs;	

Then	

s == Suit.Clubs is true s == Suit.Hearts is false	

switch(s) {	

 case Clubs:	

 case Spades:	

 color= “black”; break;	

 case Diamonds:	

 case Hearts:	

 color= “red”; break;	

}	

Can use a switch statement	

Type of s is Suit.	

	

You cannot write
Suit.Hearts instead
of Hearts	

Miscellaneous points about enums	

83	

public enum Suit {Clubs, Diamonds, Hearts, Spades}	

1. Suit is a subclass of Enum (in package java.lang)	

This declaration is shorthand for a class that has a constructor,	

four constants (public static final variables), a static method, and
some other components. Here are some points:	

2. It is not possible to create instances of class Suit, because
its constructor is private!	

3. It’s as if Clubs (as well as the other three names) is
declared within class Suit as	

 public static final Suit Clubs= new Suit(some values);	

You don’t care what values	

Miscellaneous points about enums	

84	

public enum Suit {Clubs, Diamonds, Hearts, Spades}	

4. Static function values() returns a Suit[] containing
the four constants. You can, for example, use it to
print all of them:	

 for (Suit s : Suit.values())	

 System.out.println(s);	

Output:	

Clubs	

Diamonds	

Hearts	

Spades	

You can see that toString in object
Clubs returns the string “Clubs”	

5. Static function valueOf(String name) returns the
enum constant with that name:	

 Suit c= Suit.valueOf(“Hearts”);	

After the assignment,
c contains (the name
of) object Hearts	

15	

Miscellaneous points about enums	

85	

public enum Suit {Clubs, Diamonds, Hearts, Spades}	

6. Object Clubs (and the
other three) has a function
ordinal() that returns it
position in the list	

This declaration is shorthand for a class that has a constructor,	

four constants (public static final variables), a static method, and
some other components. Here are some points:	

We have only touched the surface of enums. E.g. in an enum
declaration, you can write a private constructors, and instead
of Clubs you can put a more elaborate structure. That’s
outside the scope of CS2110.	

Suit.Clubs.ordinal() is 0	

Suit.Diamonds.ordinal() is 1	

