Lecture 25: Review and Open Problems

Course Overview

Programming Concepts
- Object-Oriented Programming
- Interfaces and Types
- Recursion
- Graphical User Interfaces (GUIs)
- Concurrency and Threads

Data-Structure Concepts
- Arrays, Trees, and Lists
- Searching & Sorting
- Stacks & Queues
- Priority Queues
- Sets & Dictionaries
- Graphs
- Induction
- Asymptotic analysis (big-O)

Operational Knowledge

Java expert

Develop skill with a set of tools that are widely useful

CS/ENGRD 2110
Object-Oriented Programming and Data Structures
Spring 2012
Thorsten Joachims

Course Overview

Programmer Concepts
- Object-Oriented Programming
- Interfaces and Types
- Recursion
- Graphical User Interfaces (GUIs)
- Concurrency and Threads

Data-Structure Concepts
- Arrays, Trees, and Lists
- Searching & Sorting
- Stacks & Queues
- Priority Queues
- Sets & Dictionaries
- Graphs
- Induction
- Asymptotic analysis (big-O)

Operational Knowledge

Course Overview

Programmer Concepts
- Object-Oriented Programming
- Interfaces and Types
- Recursion
- Graphical User Interfaces (GUIs)
- Concurrency and Threads

Data-Structure Concepts
- Arrays, Trees, and Lists
- Searching & Sorting
- Stacks & Queues
- Priority Queues
- Sets & Dictionaries
- Graphs
- Induction
- Asymptotic analysis (big-O)

Operational Knowledge

Java expert

Develop skill with a set of tools that are widely useful
Some Unsolved Problems

Complexity of Bounded-Degree Euclidean MST

- The Euclidean MST (Minimum Spanning Tree) problem:
 - Given n points in the plane, edge weights are distances
 - determine the MST
 - Can be solved in $O(n \log n)$ time by first building the Delaunay triangulation

- Bounded-degree version:
 - Given n points in the plane, determine a MST where each vertex has degree $\leq d$
 - Known to be NP-hard for $d=3$ [Papadimitriou & Vazirani 84]
 - $O(n \log n)$ algorithm for $d=5$ or greater
 - Can show Euclidean MST has degree ≤ 5
 - Unknown for $d=4$

Complexity of Euclidean MST in \mathbb{R}^d

- Given n points in dimension d, determine the MST
 - Is there an algorithm with runtime close to $O(n \log n)$?
 - Can solve in time $O(n \log n)$ for $d=2$
 - For large d, it appears that runtime approaches $O(n^2)$
 - Best algorithms for general graphs run in time linear in $m = \text{number of edges}$
 - But for Euclidean distances on points, the number of edges is $m = \frac{n(n-1)}{2}$

3SUM in Subquadratic Time?

- Given a set of n integers, are there three that sum to zero?
 - $O(n^2)$ algorithms are easy (e.g., use a hashtable)
 - Are there better algorithms?

- This problem is closely related to many other "3SUM-Hard" problems [Gajentaan & Overmars 95]
 - Given n lines in the plane, are there 3 lines that intersect in a point?
 - Given n triangles in the plane, does their union have a hole?

The Big Question: Is P=NP?

- P is the class of problems that can be solved in polynomial time
 - These problems are considered tractable
 - Problems that are not in P are considered intractable
- NP represents problems that, for a given solution, the solution can be checked in polynomial time
 - But finding the solution may be hard
- For ease of comparison, problems are usually stated as yes-or-no questions

- Example 1:
 - Given a weighted graph G and a bound k, does G have a spanning tree of weight at most k?
 - This is in P because we have an algorithm for the MST with runtime $O(m + n \log n)$

- Example 2:
 - Given graph G, does G have a Hamiltonian cycle (a simple cycle that visits all vertices)?
 - This is in P because, given a possible solution, we can check in polynomial time that it’s a cycle and that it visits all vertices exactly once

Current Status: P vs. NP

- It’s easy to show that $P \subseteq NP$
- Most researchers believe that $P \neq NP$
 - But at present, no proof
 - We do have a large collection of NP-complete problems
 - If any NP-complete problem has a polynomial time algorithm, then they all do

- A problem B is NP-complete if
 - It is in NP
 - any other problem in NP reduces to B efficiently

- Thus by making use of an imaginary fast subroutine for B, any problem in NP could be solved in polynomial time
 - the Boolean satisfiability problem is NP-complete [Cook 1971]
 - many useful problems are NP-complete [Karp 1972]
 - By now thousands of problems are known to be NP-complete
Some NP-Complete Problems

- Graph coloring: Given graph G and bound k, is G k-colorable?
- Planar 3-coloring: Given planar graph G, is G 3-colorable?
- Traveling salesperson: Given weighted graph G and bound k, is there a cycle of cost $\leq k$ that visits each vertex at least once?
- Hamiltonian cycle: Give graph G, is there a cycle that visits each vertex exactly once?
- Knapsack: Given a set of items i with weights w_i and values v_i, and numbers W and V, does there exist a subset of at most W items whose total value is at least V?
- What if you really need an algorithm for an NP-complete problem?
 - Some special cases can be solved in polynomial time
 - If you’re lucky, you have such a special case
 - Otherwise, once a problem is shown to be NP-complete, the best strategy is to start looking for an approximation
- For a while, a new proof showing a problem NP-complete was enough for a paper
 - Nowadays, no one is interested unless the result is somehow unexpected

Final Exam

- Time and Place
 - Thursday, May 11
 - 2:00pm - 4:30pm
 - Statler Hall 185
- Review Session
 - Wednesday, May 9
 - 4:00pm - 5:00pm
 - TBA
- Exam Conflicts
 - Email me TODAY!
- Office Hours
 - Continue until final exam
 - But there may be time changes...

Course Evaluations (2 Parts)

- CourseEval
 - Worth 0.5% of your course grade
 - Anonymous
 - We get a list of who completed the course evaluations and a list of responses, but no link between names & responses
 - http://www.engineering.cornell.edu/CourseEval
- CMS Survey
 - Worth another 0.5% of your course grade
 - Not anonymous
 - But no confidential questions

Becoming a Consultant

- Jealous of the glamorous life of a CS consultant?
 - We’re recruiting next-semester consultants for CS1110 and CS2110
 - Interested students should fill out an application, available in 303 Upson

Good luck on the final!

Thanks for an enjoyable semester!

Have a great summer!