Lecture 25: Review and Open Problems
Course Overview

- Programming Concepts
 - Object-Oriented Programming
 - Interfaces and Types
 - Recursion
 - Graphical User Interfaces (GUIs)
 - Concurrency and Threads
 ➔ we use Java, but the goal is to understand the ideas rather than to become a Java expert

- Data-Structure Concepts
 - Arrays, Trees, and Lists
 - Searching & Sorting
 - Stacks & Queues
 - Priority Queues
 - Sets & Dictionaries
 - Graphs
 - Induction
 - Asymptotic analysis (big-O)
 ➔ develop skill with a set of tools that are widely useful

Operational Knowledge
Programming Concepts

- Object-Oriented Programming
 - Classes and objects
 - Primitive vs. reference types
 - Dynamic vs. static types
 - Subtypes and Inheritance
 - Overriding
 - Shadowing
 - Overloading
 - Upcasting & downcasting
 - Inner & anonymous classes
- Recursion
 - Divide and conquer
 - Stack frames
 - Exceptions
- Interfaces and Types
 - Type hierarchy vs. class hierarchy
 - Generic types
 - The Comparable interface
 - Design patterns: Iterator, Observer (GUI), etc.
- GUIs
 - Components, Containers, Layout Managers
 - Events & listeners
- Concurrency and Threads
 - Locking
 - Race conditions
 - Deadlocks
Data Structure Concepts

• Basic building blocks
 – Arrays
 – Lists (Singly- and doubly-linked)
 – Trees
• Asymptotic analysis (big-O)
 – Induction
 – Solving recurrences
 – Lower bound on sorting
• Grammars & parsing
• Searching
 – Linear- vs. binary-search
• Sorting
 – Insertion-, Selection-, Merge-, Quick-, and Heapsort

• Useful ADTs (& implementations)
 – Stacks & Queues
 • Arrays & lists
 – Priority Queues
 • Heaps
 • Array of queues
 – Sets & Dictionaries
 • Arrays & lists
 • Hashing & Hashtables
 • Binary Search Trees (BSTs)
 – Graphs...
Data Structure Concepts

– Graphs
 • Mathematical definition of a graph (directed, undirected)
 • Representations
 – Adjacency matrix
 – Adjacency list
 • Topological sort
 • Coloring
 • Searching (BFS & DFS)
 • Shortest paths
 • Minimum Spanning Trees (MSTs)
 – Prim’s algorithm
 – Kruskal’s algorithm
What else is there in CS?

• CS2110 + Math is sufficient prerequisite for many 4000-level Computer Science classes!

• Areas of Computer Science:
 – Artificial Intelligence
 – Network Science
 – Software Engineering
 – Computer Graphics
 – Natural Language Processing
 – Programming Languages
 – Security and Trustworthy Systems
 – Databases
 – Operating Systems
 – Theory of Computing
Some Unsolved Problems
Complexity of Bounded-Degree Euclidean MST

• The Euclidean MST (Minimum Spanning Tree) problem:
 – Given n points in the plane, edge weights are distances
 – determine the MST
 – Can be solved in $O(n \log n)$ time by first building the Delaunay Triangulation

• Bounded-degree version:
 – Given n points in the plane, determine a MST where each vertex has degree $\leq d$
 • Known to be NP-hard for $d=3$ [Papadimitriou & Vazirani 84]
 • $O(n \log n)$ algorithm for $d=5$ or greater
 – Can show Euclidean MST has degree ≤ 5
 • Unknown for $d=4$
Complexity of Euclidean MST in \mathbb{R}^d

• Given n points in dimension d, determine the MST
 – Is there an algorithm with runtime close to $O(n \log n)$?
 – Can solve in time $O(n \log n)$ for $d=2$

• For large d, it appears that runtime approaches $O(n^2)$
 – Best algorithms for general graphs run in time linear in $m = \text{number of edges}$
 – But for Euclidean distances on points, the number of edges is $m = \frac{n(n-1)}{2}$
3SUM in Subquadratic Time?

• Given a set of n integers, are there three that sum to zero?
 – $O(n^2)$ algorithms are easy (e.g., use a hashtable)
 – Are there better algorithms?

• This problem is closely related to many other “3SUM-Hard” problems [Gajentaan & Overmars 95]
 – Given n lines in the plane, are there 3 lines that intersect in a point?
 – Given n triangles in the plane, does their union have a hole?
The Big Question: Is P=NP?

- P is the class of problems that can be solved in polynomial time
 - These problems are considered tractable
 - Problems that are not in P are considered intractable
- NP represents problems that, for a given solution, the solution can be checked in polynomial time
 - But finding the solution may be hard
- For ease of comparison, problems are usually stated as yes-or-no questions

- Example 1:
 - Given a weighted graph G and a bound k, does G have a spanning tree of weight at most k?
 - This is in P because we have an algorithm for the MST with runtime $O(m + n \log n)$

- Example 2:
 - Given graph G, does G have a Hamiltonian cycle (a simple cycle that visits all vertices)?
 - This is in NP because, given a possible solution, we can check in polynomial time that it’s a cycle and that it visits all vertices exactly once
Current Status: P vs. NP

• It’s easy to show that $P \subseteq NP$
• Most researchers believe that $P \neq NP$
 – But at present, no proof
 – We do have a large collection of NP-complete problems
 • If any NP-complete problem has a polynomial time algorithm, then they all do
• A problem B is NP-complete if
 – it is in NP
 – any other problem in NP reduces to it efficiently
• Thus by making use of an imaginary fast subroutine for B, any problem in NP could be solved in polynomial time
 – the Boolean satisfiability problem is NP-complete [Cook 1971]
 – many useful problems are NP-complete [Karp 1972]
 – By now thousands of problems are known to be NP-complete
Some NP-Complete Problems

- Graph coloring: Given graph G and bound k, is G k-colorable?
- Planar 3-coloring: Given planar graph G, is G 3-colorable?
- Traveling salesperson: Given weighted graph G and bound k, is there a cycle of cost $\leq k$ that visits each vertex at least once?
- Hamiltonian cycle: Give graph G, is there a cycle that visits each vertex exactly once?
- Knapsack: Given a set of items i with weights w_i and values v_i, and numbers W and V, does there exist a subset of at most W items whose total value is at least V?

- What if you really need an algorithm for an NP-complete problem?
 - Some special cases can be solved in polynomial time
 - If you’re lucky, you have such a special case
 - Otherwise, once a problem is shown to be NP-complete, the best strategy is to start looking for an approximation

- For a while, a new proof showing a problem NP-complete was enough for a paper
 - Nowadays, no one is interested unless the result is somehow unexpected
Final Exam

• Time and Place
 – Thursday, May 11
 – 2:00pm - 4:30pm
 – Statler Hall 185

• Review Session
 – Wednesday, May 9
 – 4:00pm – 5:00pm
 – TBA

• Exam Conflicts
 – Email me TODAY!

• Office Hours
 – Continue until final exam
 – But there may be time changes...
Course Evaluations (2 Parts)

• CourseEval
 – Worth 0.5% of your course grade
 – Anonymous
 • We get a list of who completed the course evaluations and a list of responses, but no link between names & responses
 – http://www.engineering.cornell.edu/CourseEval

• CMS Survey
 – Worth another 0.5% of your course grade
 – Not anonymous
 • But no confidential questions
Becoming a Consultant

• Jealous of the glamorous life of a CS consultant?
 – We're recruiting next-semester consultants for CS1110 and CS2110
 – Interested students should fill out an application, available in 303 Upson
Good luck on the final!

Thanks for an enjoyable semester!

Have a great summer!