Lecture 20: Other Algorithms on Graphs
Minimum Spanning Trees

• Example Problem:
 – Nodes = neighborhoods
 – Edges = possible cable routes
 – Goal: Find lowest cost network that connects all neighborhoods

• Analogously:
 – Router network
 – Clustering
 – Component in many approximation algorithms
Undirected Trees

- An undirected graph is a tree if there is exactly one (simple) path between any pair of vertices.
Facts About Trees

• Properties of (undirected) trees
 – $|E| = |V| - 1$
 – Connected
 – no cycles

• In fact, any two of these properties imply the third, and imply that the graph is a tree
Spanning Trees

- A spanning tree of a connected undirected graph \((V,E)\) is a subgraph \((V,E')\) that is a tree
 - Same set of vertices \(V\)
 - \(E' \subseteq E\)
 - \((V,E')\) is a tree
Finding a Spanning Tree

• A subtractive method
 – Start with the whole graph – it is connected
 – Find a cycle (how?), pick an edge on the cycle and throw it out
 → the graph is still connected (why?)
 – Repeat until no more cycles
Finding a Spanning Tree

• A subtractive method
 – Start with the whole graph – it is connected
 – Find a cycle (how?), pick an edge on the cycle and throw it out → the graph is still connected (why?)
 – Repeat until no more cycles
Finding a Spanning Tree

• A subtractive method
 – Start with the whole graph – it is connected
 – Find a cycle (how?), pick an edge on the cycle and throw it out
 → the graph is still connected (why?)
 – Repeat until no more cycles
Finding a Spanning Tree

• An additive method
 – Start with no edges – there are no cycles
 – Find connected components (how?).
 – If more than one connected component, insert an edge between them
 → still no cycles (why?)
 – Repeat until only one component
Finding a Spanning Tree

• An additive method
 – Start with no edges – there are no cycles
 – Find connected components (how?).
 – If more than one connected component, insert an edge between them → still no cycles (why?)
 – Repeat until only one component
Finding a Spanning Tree

• An additive method
 – Start with no edges – there are no cycles
 – Find connected components (how?).
 – If more than one connected component, insert an edge between them → still no cycles (why?)
 – Repeat until only one component
Finding a Spanning Tree

• An additive method
 – Start with no edges – there are no cycles
 – Find connected components (how?).
 – If more than one connected component, insert an edge between them
 → still no cycles (why?)
 – Repeat until only one component
Finding a Spanning Tree

• An additive method
 – Start with no edges – there are no cycles
 – Find connected components (how?).
 – If more than one connected component, insert an edge between them
 → still no cycles (why?)
 – Repeat until only one component
Finding a Spanning Tree

• An additive method
 – Start with no edges – there are no cycles
 – Find connected components (how?).
 – If more than one connected component, insert an edge between them
 → still no cycles (why?)
 – Repeat until only one component
Minimum Spanning Trees

• Suppose edges are weighted, and we want a spanning tree of **minimum cost** (sum of edge weights)
3 Greedy Algorithms

- Algorithm A: Find a max weight edge – if it is on a cycle, throw it out, otherwise keep it
3 Greedy Algorithms

- Algorithm A: Find a max weight edge – if it is on a cycle, throw it out, otherwise keep it
3 Greedy Algorithms

• Algorithm A: Find a max weight edge – if it is on a cycle, throw it out, otherwise keep it
3 Greedy Algorithms

- Algorithm A: Find a max weight edge – if it is on a cycle, throw it out, otherwise keep it
3 Greedy Algorithms

- Algorithm A: Find a max weight edge – if it is on a cycle, throw it out, otherwise keep it
3 Greedy Algorithms

- Algorithm A: Find a max weight edge – if it is on a cycle, throw it out, otherwise keep it
3 Greedy Algorithms

- Algorithm A: Find a max weight edge – if it is on a cycle, throw it out, otherwise keep it
3 Greedy Algorithms

- Algorithm A: Find a max weight edge – if it is on a cycle, throw it out, otherwise keep it.
3 Greedy Algorithms

• Algorithm B: Find a min weight edge – if it forms a cycle with edges already taken, throw it out, otherwise keep it.

Kruskal's algorithm
3 Greedy Algorithms

- Algorithm B: Find a min weight edge – if it forms a cycle with edges already taken, throw it out, otherwise keep it.

Kruskal's algorithm
3 Greedy Algorithms

- Algorithm B: Find a min weight edge – if it forms a cycle with edges already taken, throw it out, otherwise keep it.

Kruskal's algorithm
3 Greedy Algorithms

• Algorithm B: Find a min weight edge – if it forms a cycle with edges already taken, throw it out, otherwise keep it.

Kruskal's algorithm
3 Greedy Algorithms

- Algorithm B: Find a min weight edge – if it forms a cycle with edges already taken, throw it out, otherwise keep it

Kruskal's algorithm
3 Greedy Algorithms

- Algorithm B: Find a min weight edge – if it forms a cycle with edges already taken, throw it out, otherwise keep it.
3 Greedy Algorithms

• Algorithm B: Find a min weight edge – if it forms a cycle with edges already taken, throw it out, otherwise keep it

Kruskal's algorithm
3 Greedy Algorithms

• Algorithm C: Start with any vertex, add min weight edge extending that connected component that does not form a cycle

Prim's algorithm
3 Greedy Algorithms

- Algorithm C: Start with any vertex, add min weight edge extending that connected component that does not form a cycle.

Prim's algorithm
3 Greedy Algorithms

• Algorithm C: Start with any vertex, add min weight edge extending that connected component that does not form a cycle

Prim's algorithm
3 Greedy Algorithms

• Algorithm C: Start with any vertex, add min weight edge extending that connected component that does not form a cycle

Prim's algorithm
3 Greedy Algorithms

- Algorithm C: Start with any vertex, add min weight edge extending that connected component that does not form a cycle.

Prim’s algorithm
3 Greedy Algorithms

- Algorithm C: Start with any vertex, add min weight edge extending that connected component that does not form a cycle

Prim's algorithm
3 Greedy Algorithms

- Algorithm C: Start with any vertex, add min weight edge extending that connected component that does not form a cycle.
3 Greedy Algorithms

- All 3 greedy algorithms give the same minimum spanning tree (assuming distinct edge weights)
Prim’s Algorithm

```plaintext
prim(s) {
    D[t] = infty for all vertices t
    D[s] = 0;  // s is start vertex
    while (some vertices are unmarked) {
        v = unmarked vertex with smallest D;
        mark v;
        for (each w adj to v) {
            D[w] = min(D[w], c(v,w));
        }
    }
}
```

- **O(n^2)** for adj matrix
 - While-loop is executed n times
 - For-loop takes O(n) time
- **O(m + n log n)** for adj list
 - Use a PQ
 - Regular PQ produces time O(n + m log m)
 - Can improve to O(m + n log n) using a fancier heap
 - Still O(n^2) if graph is not sparse

Min “distance” to connected component
Greedy Algorithms

• These are examples of Greedy Algorithms
• The Greedy Strategy is an algorithm design technique
 – Like Divide & Conquer
• Greedy algorithms are used to solve optimization problems
 – The goal is to find the best solution
• Works when the problem has the greedy-choice property
 – A global optimum can be reached by making locally optimum choices
• Example “Change Making”:
 – Given an amount of money, find the smallest number of coins to make that amount
• Solution: Greedy Algorithm
 – Give as many large coins as you can
 – This greedy strategy produces the optimum number of coins for the US coin system
• Different money system ⇒ greedy strategy may fail
while (some vertices are unmarked) {
 v = best of unmarked vertices;
 mark v;
 for (each w adj to v)
 update w;
}
Other Graph Problems
Network Flow

• How many “units” can flow from s to t?
 – Flow in water network
 – Traffic flow

→ Ford-Fulkerson Algorithm
Minimum Cut

• Cut graph so that Source and Sink are separated, and the sum of the edges that are cut is minimized.
 – Traffic bottlenecks
 – Clustering in social networks

→ Duality with Maximum Flow
Traveling Salesperson

• Find a path of minimum distance that visits every city.
 – Planning and logistics
 – Microchip design

– NP-Hard \Rightarrow there is probably no $O(n^k)$ algorithms