Stacks and Queues as Lists

- Stack (LIFO) implemented as list
 - insert (i.e. push) to, extract (i.e. pop) from front of list
- Queue (FIFO) implemented as list
 - insert (i.e. add) on back of list, extract (i.e. poll) from front of list
- All operations are O(1)

Priority Queue

- ADT Definition
 - data items are Comparable
 - lesser elements (as determined by compareTo) have higher priority
 - extract() returns the element with the highest priority
 - i.e. least in the compareTo ordering
 - break ties arbitrarily
 - alternatively could break ties FIFO, but lets keep it simple

Priority Queue Examples

- Scheduling jobs to run on a computer
 - default priority = arrival time
 - priority can be changed by operator
- Scheduling events to be processed by an event handler
 - priority = time of occurrence
- Airline check-in
 - first class, business class, coach
 - FIFO within each class

Priority Queues as Lists

- Maintain as unordered list (i.e. queue)
 - insert() puts new element at front – O(1)
 - extract() must search the list – O(n)
- Maintain as ordered list
 - insert() must search the list – O(n)
 - extract() gets element at front – O(1)
- In either case, O(n^2) to process n elements
- Can we do better?
Important Special Case

• Fixed (and small) number of p priority levels
 – Queue within each level
 – Example: airline check-in

• insert() – insert in appropriate queue – O(1)
• extract() – must find a nonempty queue – O(p)

Heaps

• A heap is a concrete data structure that can be used to implement priority queues
• Gives better complexity than either ordered or unordered list implementation:
 – insert(): O(log n)
 – extract(): O(log n)
 \(\Rightarrow O(n \log n) \) to process n elements

NOTE: Do not confuse with heap memory, where the Java virtual machine allocates space for objects – different usage of the word heap

Heap Invariant

• Binary tree with data at each node
• Satisfies the Heap Order Invariant:
 The least (highest priority) element of any subtree is found at the root of that subtree.

Examples of Heaps

• Ages of people in family tree
 – parent is always older than children, but you can have an uncle who is younger than you

• Salaries of employees of a company
 – bosses generally make more than subordinates, but a VP in one subdivision may make less than a Project Supervisor in a different subdivision

Balanced Heaps

• Two restrictions:
 – Any node of depth \(< \) \(d - 1 \) has exactly 2 children, where \(d \) is the height of the tree
 • implies that any two maximal paths (path from a root to a leaf) are of length \(d \) or \(d - 1 \), and the tree has at least \(2d \) nodes
 – All maximal paths of length \(d \) are to the left of those of length \(d - 1 \)

Least element in any subtree is always found at the root of that subtree.
A Balanced Heap

Store in an ArrayList

- Elements of the heap are stored in the array in order, going across each level from left to right, top to bottom
- The children of the node at array index n are found at $2n + 1$ and $2n + 2$
- The parent of node n is found at $(n - 1)/2$

Store in an ArrayList

- Elements of the heap are stored in the array in order, going across each level from left to right, top to bottom
- The children of the node at array index n are found at $2n + 1$ and $2n + 2$
- The parent of node n is found at $(n - 1)/2$

insert()

- Put the new element at the end of the array
- If this violates heap order because it is smaller than its parent, swap it with its parent
- Continue swapping it up until it finds its rightful place

\rightarrow The heap invariant is maintained!

insert() Example

insert() Example
Analysis of insert()

- Time is $O(\log n)$, since the tree is balanced
 - At most $\log(d)$ swaps up the tree before invariant is restored
 - Size of tree is exponential as a function of depth d \Leftrightarrow depth of tree is logarithmic as a function of size n
 - Each insertion is finished after at most $d \leq \log(n)$ swaps

extract()

- Remove the least element – it is at the root
- This leaves a hole at the root – fill it in with the last element of the array
- If this violates heap order because the root element is too big, swap it down with the smaller of its children
- Continue swapping it down until it finds its rightful place
\Rightarrow The heap invariant is maintained!
Analysis of extract()

- Time is $O(\log n)$, since the tree is balanced
 - At most $\log(d)$ swaps down towards the leaves of the tree before invariant is restored
 - Size of tree is exponential as a function of depth d \(\Rightarrow\) depth of tree is logarithmic as a function of size n
 - Each extraction is finished after at most $d \leq \log(n)$ swaps

HeapSort

- Given a Comparable[] array of length n
- Put all n elements into a heap \(\sim O(n \log n)\)
- Repeatedly get the min and sequentially put into new array \(\sim O(n \log n)\)