Lecture 10: Asymptotic Complexity and
What Makes a Good Algorithm?

• Suppose you have two possible algorithms or data structures that basically do the same thing; which is better?

• Well... what do we mean by better?
 – Faster?
 – Less space?
 – Easier to code?
 – Easier to maintain?
 – Required for homework?

• How do we measure time and space for an algorithm?
Sample Problem: Searching

- Determine if a *sorted* array of integers contains a given integer
- First solution: Linear Search (check each element)

```java
static boolean find(int[] a, int item) {
    for (int i = 0; i < a.length; i++) {
        if (a[i] == item) return true;
    }
    return false;
}
```

```java
static boolean find(int[] a, int item) {
    for (int x : a) {
        if (x == item) return true;
    }
    return false;
}
```
Sample Problem: Searching

Second solution: Binary Search

```java
static boolean find (int[] a, int item) {
    int low = 0;
    int high = a.length - 1;
    while (low <= high) {
        int mid = (low + high)/2;
        if (a[mid] < item)
            low = mid + 1;
        else if (a[mid] > item)
            high = mid - 1;
        else return true;
    }
    return false;
}
```
Linear Search vs Binary Search

• Which one is better?
 – Linear Search is easier to program
 – But Binary Search is faster... isn’t it?

• How do we measure to show that one is faster than the other
 – Experiment
 – Proof

• Which inputs do we use?

• Simplifying assumption #1:
 • Use the size of the input rather than the input itself
 • For our sample search problem, the input size is n+1 where n is the array size

• Simplifying assumption #2:
 • Count the number of “basic steps” rather than computing exact times
One Basic Step = One Time Unit

- **Basic step:**
 - input or output of a scalar value
 - accessing the value of a scalar variable, array element, or field of an object
 - assignment to a variable, array element, or field of an object
 - a single arithmetic or logical operation
 - method invocation (not counting argument evaluation and execution of the method body)

- For a conditional, count number of basic steps on the branch that is executed

- For a loop, count number of basic steps in loop body times the number of iterations

- For a method, count number of basic steps in method body (including steps needed to prepare stack-frame)
Runtime vs Number of Basic Steps

• But is this cheating?
 – The runtime is not the same as the number of basic steps
 – Time per basic step varies depending on computer, on compiler, on details of code...

• Well...yes, in a way
 – But the number of basic steps is proportional to the actual runtime

• Which is better?
 – n or \(n^2 \) time?
 – 100 n or \(n^2 \) time?
 – 10,000 n or \(n^2 \) time?

• As \(n \) gets large, multiplicative constants become less important

• Simplifying assumption #3:
 – Ignore multiplicative constants
Using Big-O to Hide Constants

- We say $f(n)$ is order of $g(n)$ if $f(n)$ is bounded by a constant times $g(n)$
- Notation: $f(n)$ is $O(g(n))$
- Roughly, $f(n)$ is $O(g(n))$ means that $f(n)$ grows like $g(n)$ or slower, to within a constant factor
- "Constant" means fixed and independent of n

Formal definition:
$f(n)$ is $O(g(n))$ if there exist constants c and N such that for all $n \geq N$, $f(n) \leq c \cdot g(n)$
To prove that \(f(n) \) is \(O(g(n)) \):

- Find an \(N \) and \(c \) such that \(f(n) \leq c \cdot g(n) \) for all \(n \geq N \)
- We call the pair \((c, N) \) a *witness pair* for proving that \(f(n) \) is \(O(g(n)) \)
Big-O Examples

• Claim: $100 \ n + \log n$ is $O(n)$
 – We know $\log n \leq n$ for $n \geq 1$
 – So $100 \ n + \log n \leq 101 \ n$ for $n \geq 1$
 – So by definition, $100 \ n + \log n$ is $O(n)$
 for $c = 101$ and $N = 1$

• Claim: $\log_B n$ is $O(\log_A n)$
 – since $\log_B n$ is $(\log_B A)(\log_A n)$

• Question: Which grows faster, n or $\log n$?
Big-O Examples

• Let $f(n) = 3n^2 + 6n - 7$
 – $f(n)$ is $O(n^2)$
 – $f(n)$ is $O(n^3)$
 – $f(n)$ is $O(n^4)$
 – ...
• $g(n) = 4n \log n + 34n - 89$
 – $g(n)$ is $O(n \log n)$
 – $g(n)$ is $O(n^2)$
• $h(n) = 20 \cdot 2^n + 40n$
 – $h(n)$ is $O(2^n)$
• $a(n) = 34$
 – $a(n)$ is $O(1)$

→ Only the leading term (the term that grows most rapidly) matters
Problem-Size Examples

• Suppose we have a computing device that can execute 1000 operations per second; how large a problem can we solve?

<table>
<thead>
<tr>
<th></th>
<th>1 second</th>
<th>1 minute</th>
<th>1 hour</th>
</tr>
</thead>
<tbody>
<tr>
<td>n</td>
<td>1000</td>
<td>60,000</td>
<td>3,600,000</td>
</tr>
<tr>
<td>n log n</td>
<td>140</td>
<td>4893</td>
<td>200,000</td>
</tr>
<tr>
<td>n^2</td>
<td>31</td>
<td>244</td>
<td>1897</td>
</tr>
<tr>
<td>3n^2</td>
<td>18</td>
<td>144</td>
<td>1096</td>
</tr>
<tr>
<td>n^3</td>
<td>10</td>
<td>39</td>
<td>153</td>
</tr>
<tr>
<td>2^n</td>
<td>9</td>
<td>15</td>
<td>21</td>
</tr>
</tbody>
</table>
Commonly Seen Time Bounds

<table>
<thead>
<tr>
<th>Time Bound</th>
<th>Complexity</th>
<th>Rating</th>
</tr>
</thead>
<tbody>
<tr>
<td>$O(1)$</td>
<td>constant</td>
<td>excellent</td>
</tr>
<tr>
<td>$O(\log n)$</td>
<td>logarithmic</td>
<td>excellent</td>
</tr>
<tr>
<td>$O(n)$</td>
<td>linear</td>
<td>good</td>
</tr>
<tr>
<td>$O(n \log n)$</td>
<td>$n \log n$</td>
<td>pretty good</td>
</tr>
<tr>
<td>$O(n^2)$</td>
<td>quadratic</td>
<td>often OK</td>
</tr>
<tr>
<td>$O(n^3)$</td>
<td>cubic</td>
<td>maybe OK</td>
</tr>
<tr>
<td>$O(2^n)$</td>
<td>exponential</td>
<td>too slow</td>
</tr>
</tbody>
</table>
Worst-Case/Expected-Case Bounds

• We can’t possibly determine time bounds for all possible inputs of size n

• Simplifying assumption #4:
 Determine number of steps for either
 – worst-case: Determine how much time is needed for the worst possible input of size n
 – expected-case: Determine how much time is needed on average for all inputs of size n
Our Simplifying Assumptions

• Use the size of the input rather than the input itself – n
• Count the number of “basic steps” rather than computing exact times
• Multiplicative constants and small inputs ignored (order-of, big-O)
• Determine number of steps for either
 – worst-case
 – expected-case

→ These assumptions allow us to analyze algorithms effectively and easily
Worst-Case Analysis of Searching

<table>
<thead>
<tr>
<th>Linear Search</th>
</tr>
</thead>
<tbody>
<tr>
<td>static boolean find (int[] a, int item)</td>
</tr>
<tr>
<td>{</td>
</tr>
<tr>
<td>for (int i = 0; i < a.length; i++)</td>
</tr>
<tr>
<td>if (a[i] == item) return true;</td>
</tr>
<tr>
<td>}</td>
</tr>
<tr>
<td>return false;</td>
</tr>
<tr>
<td>}</td>
</tr>
<tr>
<td>worst-case time = $O(n)$</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Binary Search</th>
</tr>
</thead>
<tbody>
<tr>
<td>static boolean find (int[] a, int item)</td>
</tr>
<tr>
<td>{</td>
</tr>
<tr>
<td>int low = 0;</td>
</tr>
<tr>
<td>int high = a.length - 1;</td>
</tr>
<tr>
<td>while (low <= high)</td>
</tr>
<tr>
<td>int mid = (low + high)/2;</td>
</tr>
<tr>
<td>if (a[mid] < item)</td>
</tr>
<tr>
<td>low = mid+1;</td>
</tr>
<tr>
<td>else if (a[mid] > item)</td>
</tr>
<tr>
<td>high = mid - 1;</td>
</tr>
<tr>
<td>else return true;</td>
</tr>
<tr>
<td>}</td>
</tr>
<tr>
<td>return false;</td>
</tr>
<tr>
<td>}</td>
</tr>
<tr>
<td>worst-case time = $O(\log n)$</td>
</tr>
</tbody>
</table>
Comparison of Algorithms

Linear vs. Binary Search

Max Number of Comparisons vs. Number of Items in Array

- Linear Search
- Binary Search
Comparison of Algorithms

Linear vs. Binary Search

Max Number of Comparisons

Number of Items in Array

- Linear Search
- Binary Search
Analysis of Matrix Multiplication

• Code for multiplying n-by-n matrices A and B:
 – By convention, matrix problems are measured in terms of n, the number of rows and columns
 • Note that the input size is really $2n^2$, not n
 – Worst-case time is $O(n^3)$
 – Expected-case time is also $O(n^3)$

```plaintext
for (i = 0; i < n; i++)
    for (j = 0; j < n; j++) {
        C[i][j] = 0;
        for (k = 0; k < n; k++)
            C[i][j] += A[i][k]*B[k][j];
    }
```
Remarks

• Once you get the hang of this, you can quickly zero in on what is relevant for determining asymptotic complexity
 – For example, you can usually ignore everything that is not in the innermost loop. Why?

• Main difficulty:
 – Determining runtime for recursive programs
Why Bother with Runtime Analysis?

- Computers are so fast these days that we can do whatever we want using just simple algorithms and data structures, right?
- Well...not really – data-structure/algorithm improvements can be a very big win

Scenario:
- A runs in n^2 msec
- A' runs in $n^2/10$ msec
- B runs in $10n \log n$ msec

Problem of size $n=10^3$
- A: 10^3 sec \approx 17 minutes
- A': 10^2 sec \approx 1.7 minutes
- B: 10^2 sec \approx 1.7 minutes

Problem of size $n=10^6$
- A: 10^9 sec \approx 30 years
- A': 10^8 sec \approx 3 years
- B: $2 \cdot 10^5$ sec \approx 2 days

- 1 day = 86,400 sec \approx 105 sec
- 1,000 days \approx 3 years
Algorithms for the Human Genome

• Human genome = 3.5 billion nucleotides
 ~ 1 Gb

• @1 base-pair instructions/√ sec
 - $n^2 \rightarrow 388445$ years
 - $n \log n \rightarrow 30.824$ hours
 - $n \rightarrow 1$ hour
Limitations of Runtime Analysis

• Big-O can hide a very large constant
 – Example: selection
 – Example: small problems

• The specific problem you want to solve may not be the worst case
 – Example: Simplex method for linear programming

• Your program may not be run often enough to make analysis worthwhile
 – Example: one-shot vs. every day
 – You may be analyzing and improving the wrong part of the program

• Should also use profiling tools
Summary

• Asymptotic complexity
 – Used to measure of time (or space) required by an algorithm
 – Measure of the *algorithm*, not the *problem*

• Searching a sorted array
 – Linear search: $O(n)$ worst-case time
 – Binary search: $O(\log n)$ worst-case time

• Matrix operations:
 – Note: $n = \text{number-of-rows} = \text{number-of-columns}$
 – Matrix-vector product: $O(n^2)$ worst-case time
 – Matrix-matrix multiplication: $O(n^3)$ worst-case time

• More later with sorting and graph algorithms