Recursion Overview

- Recursion is a powerful technique for specifying functions, sets, and programs
- Example recursively-defined functions and programs
 - factorial
 - combinations
 - exponentiation (raising to an integer power)
 - solution of combinatorial problems (i.e. search)
- Example recursively-defined sets
 - grammars
 - expressions
 - data structures (lists, trees, ...)

The Factorial Function (n!)

- Define: \(n! = n \cdot (n-1) \cdot (n-2) \cdot \ldots \cdot 3 \cdot 2 \cdot 1 \)
 - read: “n factorial”
 - E.g., 3! = 3 \cdot 2 \cdot 1 = 6
- The function \(\text{int} \rightarrow \text{int} \) that gives \(n! \) on input \(n \) is called the factorial function
- \(n! \) is the number of permutations of \(n \) distinct objects
 - There is just one permutation of one object. 1! = 1
 - There are two permutations of two objects: 2! = 2
 1 2 2 1
 - There are six permutations of three objects: 3! = 6
 1 2 3 1 3 2 2 1 3 2 1 3 1 2

A Recursive Program

Recursive definition of \(n! \)
- 0! = 1
- \(n! = n \cdot (n-1)! \), \(n > 0 \)

```java
static int fact(int n) {
    if (n == 0) return 1;
    else return n * fact(n-1);
}
```

Execution of fact(4)

- fact(4) \(\rightarrow \) 24
- fact(3) \(\rightarrow \) 6
- fact(2) \(\rightarrow \) 2
- fact(1) \(\rightarrow \) 1
- fact(0) \(\rightarrow \) 1

Permutations of non-orange blocks

Each permutation of the three non-orange blocks gives four permutations when the orange block is included

Total number = 4 \cdot 6 = 24 = 4!

General Approach to Writing Recursive Functions

- Try to find a parameter, say \(n \), such that the solution for \(n \) can be obtained by combining solutions to the same problem using smaller values of \(n \) (e.g., \(n! \) (i.e. recursion)
- Find base case(s) — small values of \(n \) for which you can just write down the solution (e.g., 0! = 1)
- Verify that, for any valid value of \(n \), applying the reduction of step 1 repeatedly will ultimately hit one of the base cases
The Fibonacci Function

- Mathematical definition:
 \[\text{fib}(0) = 0 \]
 \[\text{fib}(1) = 1 \]
 \[\text{fib}(n) = \text{fib}(n-1) + \text{fib}(n-2), \quad n \geq 2 \]

- Fibonacci sequence: 0, 1, 1, 2, 3, 5, 8, 13, …

static int fib(int n) {
 if (n == 0) return 0;
 else if (n == 1) return 1;
 else return fib(n - 1) + fib(n - 2);
}

Fibonacci (Leonardo Pisano)
1170–1240?
Statue in Pisa, Italy, Giovanni Paganucci, 1863

Recursive Execution

static int fib(int n) {
 if (n == 0) return 0;
 else if (n == 1) return 1;
 else return fib(n - 1) + fib(n - 2);
}

fib(4)
fib(3)
fib(2)
fib(1)
fib(0)

Execution of fib(4):

Combutions
(a.k.a. Binomial Coefficients)

- How many ways can you choose \(r \) items from a set of \(n \) distinct elements? \(\binom{n}{r} \) “n choose r”
 \[\binom{5}{2} = \text{number of 2-element subsets of \{A,B,C,D,E\}} \]
 \[\binom{2}{A} = \text{number of 2-element subsets containing A.} \]
 \[\text{2-element subsets containing A.} \binom{\{A\}}{1} = \binom{\{A\}}{1} = 1 \]
 \[\binom{\{A\}}{1} = \binom{\{A\}}{1} = 2 \]
 \[\binom{\{A\}}{1} = \binom{\{A\}}{1} = 3 \]
 \[\binom{\{A\}}{1} = \binom{\{A\}}{1} = 4 \]
 \[\binom{\{A\}}{1} = \binom{\{A\}}{1} = 5 \]

- Therefore, \(\binom{5}{2} = \binom{4}{1} + \binom{4}{2} \)

Binomial Coefficients

- Combinations are also called binomial coefficients because they appear as coefficients in the expansion of the binomial \((x+y)^n\)

\[(x + y)^n = \binom{n}{0} x^n + \binom{n}{1} x^{n-1} y + \binom{n}{2} x^{n-2} y^2 + \cdots + \binom{n}{n} y^n \]

Combinations

\[\binom{n}{r} = \binom{n-1}{r} + \binom{n-1}{r-1}, \quad n > r > 0 \]
\[\binom{n}{n} = 1 \]
\[\binom{n}{0} = 1 \]

Can also show that \(\binom{n}{r} = \frac{n!}{r!(n-r)!} \)

Pascal’s triangle

1
1 1
1 2 1
1 3 3 1
1 4 6 4 1

Multiple Base Cases

\[\binom{n}{r} = \binom{n-1}{r} + \binom{n-1}{r-1}, \quad n > r > 0 \]
\[\binom{n}{n} = 1 \]
\[\binom{n}{0} = 1 \]

Two base cases

- Coming up with right base cases can be tricky!
- General idea:
 - Determine argument values for which recursive case does not apply
 - Introduce a base case for each one of these
Recursive Program for Combinations

\[\binom{n}{r} = \binom{n-1}{r} + \binom{n-1}{r-1}, \quad n > r > 0 \]

\[\binom{n}{0} = 1 \]

\[\binom{0}{0} = 1 \]

```java
static int combs(int n, int r) {
    //assume n>=r>=0
    if (r == 0 || r == n) return 1; //base cases
    else return combs(n-1, r) + combs(n-1, r-1);
}
```

Positive Integer Powers

- \(a^n = a \cdot a \cdot a \cdots a \) (n times)
- Alternate description:
 - \(a^0 = 1 \)
 - \(a^{n+1} = a \cdot a^n \)

```java
static int power(int a, int n) {
    if (n == 0) return 1;
    else return a*power(a, n-1);
}
```

A Smarter Version

- Power computation:
 - \(a^0 = 1 \)
 - If n is nonzero and even, \(a^n = (a^{n/2})^2 \)
 - If n is odd, \(a^n = a \cdot (a^{n/2})^2 \)
 - Note: this requires \(3 \) multiplications rather than \(5 \)!
- Example:
 - \(a^5 = a \cdot (a^{4/2})^2 = a \cdot (a^2)^2 = a^3 \cdot a^2 \)

- What if \(n \) were larger?
 - Savings would be more significant
 - Straightforward computation: \(n \) multiplications
 - Smarter computation: \(\log(n) \) multiplications

```java
static int power(int a, int n) {
    if (n == 0) return 1;
    int halfPower = power(a, n/2);
    if (n%2 == 0) return halfPower*halfPower;
    return halfPower*halfPower*a;
}
```

Implementation of Recursive Methods

- Key idea:
 - Use a stack to remember parameters and local variables across recursive calls
 - Each method invocation gets its own stack frame
- A stack frame contains storage for
 - Local variables of method
 - Parameters of method
 - Return info (return address and return value)
 - Perhaps other bookkeeping info

Stacks

- Like a stack of plates
- You can push data on top or pop data off the top in a LIFO (last-in-first-out) fashion
- A queue is similar, except it is FIFO (first-in-first-out)
A new stack frame is pushed with each recursive call
The stack frame is popped when the method returns
→ Leaving a return value (if there is one) on top of the stack

At any point in execution, many invocations of power may be in existence
→ Many stack frames (all for power) may be in Stack
→ Thus there may be several different versions of the variables a and n

Computational activity takes place only in the topmost (most recently pushed) stack frame

How does processor know which location is relevant at a given point in the computation?
→ Frame Base Register
 • When a method is invoked, a frame is created for that method invocation, and FBR is set to point to that frame
 • When the invocation returns, FBR is restored to what it was before the invocation

How does machine know what value to restore in the FBR?
• This is part of the return info in the stack frame

Recursion is a convenient and powerful way to define functions
• Problems that seem insurmountable can often be solved in a “divide-and-conquer” fashion:
 → Reduce a big problem to smaller problems of the same kind, solve the smaller problems
 → Recombine the solutions to smaller problems to form solution for big problem

Important application: parsing

Example: power(2, 5)

```
static int power(int a, int n) {
    if (n == 0) return 1;
    int hP = power(a, n/2);
    if (n%2 == 0) return hP*hP;
    return hP*hP*a;
}
```