Course Staff

- Instructor
 - Doug James (djames@cs.cornell.edu)

- Teaching Assistants
 - Konstantinos Mamouras (mamouras@cs.cornell.edu)
 - Mark Verheggen (mark@cs.cornell.edu)
 - more TAs are TBD

- Consultants
 - TBD

What is wrong with this Program?

```java
public class Mystery {
    public static void main(String[] args) {
        int[] a = {7, 121, 12, 13, 9, 324, 1};
        boolean d;
        do {
            d = false;
            for (int b = 1; b < a.length; b++) {
                if (a[b-1] > a[b]) {
                    int c = a[b];
                    a[b] = a[b-1];
                    a[b-1] = c;
                    d = true;
                }
            }
        } while (d);
        for (int e : a) {
            System.out.println(e);
        }
    }
}
```

→ Output: “1, 7, 9, 12, 13, 121, 324”

Most Software Sucks

(see "Article on Software" on webpage)

Moore’s Law

Figure 5: Processor performance in millions of instructions per second (MIPS) forIntel processors, 1971-1995.

From Lives and death of Moore’s Law, Ilkka Tuomi, 2002
Grandmother’s Law

- Brain takes about 0.1 second to recognize your grandmother
 - About 1 second to add two integers (e.g. 3+4=7)
 - About 10 seconds to think/write statement of code
- Your brain is not getting any faster!

Why the world need CS 2110!

- Real systems are large and complex.
 - YEAR | OPERATING SYSTEM | MILLIONS OF LINES OF CODE
 - 1993 | Windows NT 3.1 | 6
 - 1994 | Windows NT 3.5 | 10
 - 1996 | Windows NT 4.0 | 16
 - 2000 | Windows 2000 | 29
 - 2001 | Windows XP | 40
 - 2005 | Windows Vista | 50
- Computer Science ➔ Managing Complexity
 - Analyze highly complex situations
 - Decompose problem into independent components
 - Assure correctness of components
 - Reuse prior work that is proven correct
 - Spread work over multiple people

“Sam Loyd’s 8 Puzzle”

- Goal:
 - Given an initial configuration of tiles, find a sequence of moves that will lead to the sorted configuration.
 - A particular configuration is called a state of the puzzle.

State Transition Diagram of 8-Puzzle

- State Transition Diagram: picture of adjacent states.
- A state Y is adjacent to state X if Y can be reached from X in one move.

State Transition Diagram for a 2x2 Puzzle

Graphs

- State Transition Diagram in previous slide is an example of a graph: a mathematical abstraction
 - vertices (or nodes): the puzzle states
 - edges (or arcs): connections between pairs of vertices
 - vertices and edges may be labeled with some information (name, direction, weight, cost, …)
- Graphs: vocabulary/abstraction for problems
 - Airline routes, roadmaps, …
 - Polygon meshes
 - Social networks
 - etc.
Path Problems in Graphs

- Is there a path from node A to node B?
 - Solve the 8-puzzle
- What is the shortest path from A to B?
 - 8-puzzle (efficiently)
 - Driving directions
- Network flow
 - Friendship structure of facebook
- Eigenvectors
 - Pagerank in Google

Simulating the 8-puzzle

- What operations should puzzle objects support?
- How do we represent states?
- How do we specify an initial state?
- What algorithm do we use to solve a given initial configuration?
- How should we present information to the user? (GUI design)
- How to structure the program so it can be understood, maintained, upgraded?

Course Objectives

- Concepts in modern programming languages
 - recursive algorithms and data structures
 - data abstraction, subtyping, generic programming
 - frameworks and event-driven programming, graphical user interfaces
 - Organizing large programs
- Building blocks: data structures and their algorithms
 - arrays, lists, stacks, queues, trees, hashtables, graphs
- Algorithm analysis and designing for efficiency
 - asymptotic complexity, induction

Using Java, but not a course on Java!

Why you need CS 2110?

- Fun and intellectually interesting; cool math ideas meet engineering (and make a difference)
- Crucial to any engineering or science career
 - Good programmers are 10x more productive
 - Leverage knowledge in other fields, create new possibilities
 - Where will you be in 10 years?
- Great job prospects with high salaries...
- Computational Thinking: You’ll learn to think in a more logical, structured way
- Computational thinking pervades almost every subject of inquiry in today’s world

Graphics, Simulation & Games
(arrays, lists, stacks, queues, trees, hashtables, graphs, and algorithms galore!)

[James & Pai, SIGGRAPH 2004]

Are you ready for CS2110?

- CS2110 assumes you know Java
 - You took CS1110 at Cornell
 - You have “completed” CS1130
 - Or took a high school course and got a 4 or 5 on the CS AP exam
- CS2110 assumes you actually remember Java
 - Go over online material of CS1130
 - classes, objects, fields, methods, constructors, static and instance variables, control structures, arrays, strings, exposure to inheritance
- Don’t take CS1110 just because you are worried that your high school Java experience won’t do
- We recommend against trying to skip directly into CS3110.
And how about CS2112?

- CS2112 is equivalent to CS2110 in terms of
 - requirements
 - prerequisites
 - course material that is covered
- CS2112 is different in the following respects
 - gives more depth in some areas
 - is more project driven
 - more challenging assignments
 - includes a lab in addition to sections (⇒ 4 credits)
- the first 3 weeks. Same course time.

Lectures

- Time and place
 - Tuesday/Thursday 10:10-11am, Olin 155
 - Attendance is mandatory
 - In-class quizzes
- ENGRD 2110 or CS 2110?
 - Same course! We call it CS 2110
 - Non-engineers sign up for CS 2110
 - Engineers sign up for ENGRD 2110
- Reading and examples will be posted online together with lecture notes

Sections

- Each section will be led by a TA
 - Reinforces lecture material, help on homework
 - Sometimes additional material
- Everybody needs to register for a section
 - Section numbers are different for CS and ENGRD
 - Like lecture, attendance is mandatory
 - No permission needed to switch sections
 - We recommend that you do NOT switch often
- You may attend more than one section
- No sections this week — they start next week!

Consulting and Office Hours

- Office Hours
 - Prof. James (after class, Upson 5146)
 - Teaching Assistants
 - See webpage for times and locations
- Consulting Hours
 - Google calendar on webpage
 - In Upson 360
 - “Front line” for answering questions
 - Consulting hours start next week

Resources

- Course web site
 - http://courses.cs.cornell.edu/cs2110
- Piazza
 - Good place to ask questions
 - Announcements
- Textbook
 - Frank M. Carrano, Data Structures and Abstractions with Java, 3rd ed., Prentice Hall
 - Additional material on the Prentice Hall website
- Recorded Videonote Lectures Fall 2010 (Birman)
 - Warning: Different instructor, different content

Academic Excellence Workshops

- Two-hour labs in which students work together in cooperative setting
- One credit S/U course based on attendance
- Time and location TBA
- See the website for more info http://www.engineering.cornell.edu/student-services/learning/academic-excellence-workshops
Obtaining Java

- See “Resources” on website
- We recommend Java 6
- Need Java Development Kit (JDK), not just Java Runtime Environment (JRE)

Eclipse

- IDE: Interactive Development Environment
 - We highly recommend use of Eclipse
 - Helps you write/compile your code
 - Helps with debugging
 - Eclipse tutorial in section
- See “Resources” on website

Coursework

- Five assignments (43%)
- Two prelims (15% each)
- Final exam (20%)
- Course evaluation (1%)
- Survey (1%)
- Quizzes in class (5%)

- Submit assignment late:
 - 5 points deduction per 24h late.
 - Everybody has 5 “free” late days.
 - Maximum 3 days late on each assignment
- For assignments and quizzes, lowest grade gets replaced by second-lowest grade.

Assignments

- Assignments may be done by teams of two students (except for A1)
 - You may choose to do them by yourself
 - A1 will be posted on Thursday
- Finding a partner
 - Choose your own or contact your TA.
 - Piazza may be helpful.
 - Monogamy encouraged. However, you may change partners between assignments (but not within).
- Please read partner info and Code of Academic Integrity on website

Survey

- Soon available on CMS as a “quiz”
- Learn about course participants
 - Understand better who you are
 - Refine CS2110 content
- Participating accounts for 1% of overall grade
 - Obviously not graded
 - There are no wrong answers
- Deadline: next week Friday, Feb 3.

Academic Integrity

- See Academic Integrity Policy on website
- We use artificial intelligence tools to check each homework assignment
 - The software is very accurate!
 - It tests your code and also notices similarities between code written by different people
- Sure, you can fool this software
 - ... but it’s easier to just do the assignments
 - Penalty ranges from negative points for the assignment to failing the course.
Welcome!

We hope you have fun, and enjoy programming as much as we do.