
5/5/2011

1

CS/ENGRD 2110
Object-Oriented Programming 

and Data Structures
Spring 2011

Thorsten Joachims

Lecture 25: 
Review and Open Problems

Course Overview

• Programming Concepts
– Object-Oriented 

Programming

– Interfaces and Types

– Recursion

– Graphical User Interfaces 
(GUIs)

– Concurrency and Threads

we use Java, but the goal is 
to understand the ideas 
rather than to become a 
Java expert

• Data-Structure Concepts
– Induction

– Asymptotic analysis (big-O)

– Arrays, Trees, and Lists

– Searching & Sorting

– Stacks & Queues

– Priority Queues

– Sets & Dictionaries

– Graphs

 develop skill with a set of 
tools that are widely useful

2

Operational Knowledge

Programming Concepts

• Object-Oriented Programming
– Classes and objects
– Primitive vs. reference types
– Dynamic vs. static types
– Subtypes and Inheritance

• Overriding
• Shadowing
• Overloading
• Upcasting & downcasting

– Inner & anonymous classes 

• Recursion
– Divide and conquer
– Stack frames
– Exceptions

• Interfaces and Types
– Type hierarchy vs. class 

hierarchy
– Generic types
– The Comparable interface
– Design patterns: Iterator, 

Observer (GUI), etc.

• GUIs
– Components, Containers, 

Layout Managers
– Events & listeners

• Concurrency and Threads
– Locking
– Race conditions
– Deadlocks

3

Data Structure Concepts

• Basic building blocks
– Arrays
– Lists (Singly- and doubly-linked)
– Trees

• Asymptotic analysis (big-O)
– Induction
– Solving recurrences
– Lower bound on sorting

• Grammars & parsing
• Searching

– Linear- vs. binary-search

• Sorting
– Insertion-, Selection-, Merge-, 

Quick-, and Heapsort

• Useful ADTs (& 
implementations)
– Stacks & Queues

• Arrays & lists

– Priority Queues
• Heaps
• Array of queues

– Sets & Dictionaries
• Arrays & lists
• Hashing & Hashtables
• Binary Search Trees (BSTs)

– Graphs...

4

Data Structure Concepts

• Graphs

– Mathematical definition 
of a graph (directed, 
undirected)

– Representations
• Adjacency matrix

• Adjacency list

– Topological sort

– Coloring

– Searching (BFS & DFS)

– Shortest paths

– Minimum Spanning 
Trees (MSTs)
• Prim’s algorithm

• Kruskal’s algorithm

5

What else is there in CS?

• CS2110 + Math is sufficient prerequisite for many 
4000-level Computer Science classes!

• Areas of Computer Science:
– Artificial Intelligence
– Network Science
– Software Engineering
– Computer Graphics
– Natural Language Processing
– Programming Languages
– Security and Trustworthy Systems
– Databases
– Operating Systems
– Theory of Computing

6



5/5/2011

2

Some 
Unsolved 
Problems

Complexity of Bounded-Degree 
Euclidean MST

• The Euclidean MST 
(Minimum Spanning Tree) 
problem: 
– Given n points in the plane, 

edge weights are distances
– determine the MST
– Can be solved in O(n log n) 

time by first building the 
Delaunay Triangulation

• Bounded-degree version:
– Given n points in the plane, 

determine a MST where each 
vertex has degree ≤ d
• Known to be NP-hard for d=3 

[Papadimitriou & Vazirani 84]
• O(n log n) algorithm for d=5 or 

greater
– Can show Euclidean MST has 

degree ≤ 5

• Unknown for d=4

8

Complexity of Euclidean MST in Rd

• Given n points in 
dimension d, determine 
the MST

– Is there an algorithm 
with runtime close to 
the O(n log n)?

– Can solve in time 
O(n log n) for d=2

• For large d, it appears 
that runtime 
approaches O(n2)

– Best algorithms for 
general graphs run in 
time linear in 
m = number of edges

– But for Euclidean 
distances on points, the 
number of edges is 
m = n(n-1)/2

9

3SUM in Subquadratic Time?

• Given a set of n integers, 
are there three that sum 
to zero?
– O(n2) algorithms are easy 

(e.g., use a hashtable)

– Are there better 
algorithms?

• This problem is closely 
related to many other 
“3SUM-Hard” problems 
[Gajentaan & Overmars
95]
– Given n lines in the 

plane, are there 3 lines 
that intersect in a point?

– Given n triangles in the 
plane, does their union 
have a hole?

11

Winning Strategies for the Parity 
Game?

• Played on a directed graph with nodes 0, 1, 2, ..., n−1
– Start with a pebble on node 0
– Players Steven and Todd alternately choose edges along which to push the 

pebble
– They play forever...

• Who wins?
– Steven wins if the least-numbered vertex visited infinitely often is even
– Todd wins if the least-numbered vertex visited infinitely often is odd

• It is known that for any graph, either Steven or Todd has a winning 
strategy − but can you determine which?
– Equivalent to a major open problem in logic

13

1

0

4
2

3

5

The Big Question: Is P=NP?

• P is the class of problems that can 
be solved in polynomial time
– These problems are considered 

tractable
– Problems that are not in P are 

considered intractable

• NP represents problems that, for 
a given solution, the solution can 
be checked in polynomial time
– But finding the solution may be 

hard

• For ease of comparison, problems 
are usually stated as yes-or-no 
questions

• Example 1:
– Given a weighted graph G and a 

bound k, does G have a spanning 
tree of weight at most k?

– This is in P because we have an 
algorithm for the MST with 
runtime O(m + n log n)

• Example 2:
– Given graph G, does G have a 

Hamiltonian cycle (a simple cycle 
that visits all vertices)?

– This is in NP because, given a 
possible solution, we can check in 
polynomial time that it’s a cycle 
and that it visits all vertices exactly 
once

14



5/5/2011

3

Current Status: P vs. NP

• It’s easy to show that P ⊆ NP
• Most researchers believe that 

P ≠ NP
– But at present, no proof
– We do have a large collection 

of NP-complete problems
• If any NP-complete problem has 

a polynomial time algorithm, 
then they all do

• A problem B is NP-complete if
– it is in NP
– any other problem in NP 

reduces to it efficiently

• Thus by making use of an 
imaginary fast subroutine for 
B, any problem in NP could be 
solved in polynomial time
– the Boolean satisfiability

problem is NP-complete [Cook 
1971]

– many useful problems are NP-
complete [Karp 1972]

– By now thousands of problems 
are known to be NP-complete

15

Some NP-Complete Problems

• Graph coloring: Given graph G 
and bound k, is G k-colorable?

• Planar 3-coloring: Given planar 
graph G, is G 3-colorable?

• Traveling salesperson: Given 
weighted graph G and bound k, is 
there a cycle of cost ≤ k that visits 
each vertex at least once?

• Hamiltonian cycle: Give graph G, 
is there a cycle that visits each 
vertex exactly once?

• Knapsack: Given a set of items i
with weights wi and values vi, and 
numbers W and V, does there 
exist a subset of at most W items 
whose total value is at least V?

• What if you really need an 
algorithm for an NP-complete 
problem?
– Some special cases can be solved in 

polynomial time
• If you’re lucky, you have such a 

special case

– Otherwise, once a problem is 
shown to be NP-complete, the best 
strategy is to start looking for an 
approximation

• For a while, a new proof showing 
a problem NP-complete was 
enough for a paper
– Nowadays, no one is interested 

unless the result is somehow 
unexpected

16

Final Exam

• Time and Place

– Thursday, May 12

– 2:00pm - 4:30pm

– Baker Laboratory 200 
(BKL200)

• Review Session

– Wednesday, May 11

– 3:30pm – 5:00pm

– Kimball B11

• Exam Conflicts

– Email me TODAY!

• Office Hours

– Continue until final exam

– But there may be time 
changes…

17

Course Evaluations (2 Parts)

• CourseEval
– Worth 0.5% of your course grade

– Anonymous
• We get a list of who completed the course evaluations and a 

list of responses, but no link between names & responses

– http://www.engineering.cornell.edu/CourseEval

• CMS Survey
– Worth another 0.5% of your course grade

– Not anonymous
• But no confidential questions

18

Becoming a Consultant

• Jealous of the glamorous life of a CS 
consultant?

– We're recruiting next-semester consultants for 
CS1110 and CS2110

– Interested students should fill out an application, 
available in 303 Upson

19

☼

Good luck on the final!

Thanks for an enjoyable semester!

Have a great summer!

☺


