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CS/ENGRD 2110
Object-Oriented Programming 

and Data Structures
Spring 2011

Thorsten Joachims

Lecture 20: Other 
Algorithms on Graphs

Minimum Spanning Trees

• Example Problem:
– Nodes = neighborhoods
– Edges = possible cable 

routes
– Goal: Find lowest cost 

network that connects all 
neighborhoods

• Analogously:
– Router network
– Clustering
– Component in many 

approximation algorithms
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Undirected Trees

• An undirected graph is a tree if there is exactly 
one (simple) path between any pair of vertices

Facts About Trees

• Properties of trees
– |E| = |V| – 1

– Connected

– no cycles

• In fact, any two of 
these properties 
imply the third, and 
imply that the 
graph is a tree

Spanning Trees

• A spanning tree of a connected undirected 
graph (V,E) is a subgraph (V,E') that is a tree

– Same set of vertices V

– E' ⊆ E

– (V,E') is a tree

Finding a Spanning Tree

• A subtractive method

– Start with the whole 
graph – it is connected

– Find a cycle (how?), pick 
an edge on the cycle and 
throw it out 
 the graph is still 
connected (why?)

– Repeat until no more 
cycles
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Finding a Spanning Tree

• An additive method
– Start with no edges –

there are no cycles

– Find connected 
components (how?). 

– If more than one 
connected component, 
insert an edge between 
them 
still no cycles (why?)

– Repeat until only one 
component

Finding a Spanning Tree

• An additive method
– Start with no edges –

there are no cycles

– Find connected 
components (how?). 

– If more than one 
connected component, 
insert an edge between 
them 
still no cycles (why?)

– Repeat until only one 
component

Minimum Spanning Trees

• Suppose edges are weighted, and we want a 
spanning tree of minimum cost (sum of edge 
weights)
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3 Greedy Algorithms

• Algorithm A: Find a max weight edge – if it is 
on a cycle, throw it out, otherwise keep it
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3 Greedy Algorithms

• Algorithm B: Find a min weight edge – if it 
forms a cycle with edges already taken, throw 
it out, otherwise keep it
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3 Greedy Algorithms

• Algorithm B: Find a min weight edge – if it 
forms a cycle with edges already taken, throw 
it out, otherwise keep it
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3 Greedy Algorithms

• Algorithm C: Start with any vertex, add min 
weight edge extending that connected 
component that does not form a cycle
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Prim's algorithm 33
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• All 3 greedy algorithms give the same 
minimum spanning tree (assuming distinct 
edge weights)
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Prim’s Algorithm

• O(m + n log n) for adj list

– Use a PQ

– Regular PQ produces time O(n + m log m)

– Can improve to O(m + n log n) using a
fancier heap

prim(s) {

D[s] = 0; mark s; //start vertex

while (some vertices are unmarked) {

v = unmarked vertex with smallest D;

mark v;

for (each w adj to v) {

D[w] = min(D[w], c(v,w));

}

}

}

• O(n2) for adj matrix

– While-loop is executed n times

– For-loop takes O(n) time

Min “distance” to 

connected component

Greedy Algorithms

• These are examples of Greedy 
Algorithms

• The Greedy Strategy is an 
algorithm design technique
– Like Divide & Conquer

• Greedy algorithms are used to 
solve optimization problems
– The goal is to find the best 

solution

• Works when the problem has 
the greedy-choice property
– A global optimum can be 

reached by making locally 
optimum choices

• Example “Change Making”:
– Given an amount of money, 

find the smallest number of 
coins to make that amount

• Solution: Greedy Algorithm
– Give as many large coins as you 

can
– This greedy strategy produces 

the optimum number of coins 
for the US coin system

• Different money system ⇒
greedy strategy may fail

Similar Code Structures

while (some vertices are

unmarked) {

v = best of unmarked

vertices;

mark v;

for (each w adj to v)

update w;

}

• BFS (unweighted) 

–best: next in queue

–update: D[w] = D[v]+1

• BFS (weighted)  Dijkstra

–best: next in PQ

–update: D[w] = min{ D[w], D[v]+c(v,w) }

• Prim

–best: next in PQ

–update: D[w] = min{ D[w], c(v,w) }

Other Graph Problems
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Network Flow

• How many “units” can flow from s to t?
– Flow in water network

– Traffic flow

 Ford-Fulkerson Algorithm

Minimum Cut

• Cut graph so that Source and Sink are separated, and 
the sum of the edges that are cut is minimized.
– Traffic bottlenecks

– Clustering in social networks

 Duality with Maximum Flow

Traveling Salesperson

• Find a path of minimum distance that visits every city.
– Planning and logistics

– Microchip design

– NP-Hard  there is probably no O(nk) algorithms
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