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Lecture 20: Other
Algorithms on Graphs

Minimum Spanning Trees

¢ Example Problem:
— Nodes = neighborhoods

— Edges = possible cable
routes

— Goal: Find lowest cost
network that connects all
neighborhoods

* Analogously:
— Router network
— Clustering

— Component in many
approximation algorithms

Undirected Trees

* An undirected graph is a tree if there is exactly
one (simple) path between any pair of vertices

Facts About Trees

* Properties of trees
—|El=|V|-1
— Connected
— no cycles

* In fact, any two of
these properties
imply the third, and
imply that the
graph is a tree

Spanning Trees

* A spanning tree of a connected undirected
graph (V,E) is a subgraph (V,E') that is a tree
— Same set of vertices V
—E'CE - o

—(V,E')is atree . »

Finding a Spanning Tree

* Asubtractive method

— Start with the whole
graph —itis connected

— Find a cycle (how?), pick
an edge on the cycle and
throw it out
- the graph is still
connected (why?)

— Repeat until no more
cycles
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Minimum Spanning Trees 3 Greedy Algorithms

* Suppose edges are weighted, and we want a
spanning tree of minimum cost (sum of edge
weights)

* Algorithm A: Find a max weight edge —if it is
on a cycle, throw it out, otherwise keep it
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3 Greedy Algorithms

* Algorithm B: Find a min weight edge — if it
forms a cycle with edges already taken, throw
it out, otherwise keep it

Kruskal's a
algorithm . A
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3 Greedy Algorithms

¢ Algorithm C: Start with any vertex, add min
weight edge extending that connected
component that does not form a cycle
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3 Greedy Algorithms

* All 3 greedy algorithms give the same
minimum spanning tree (assuming distinct
edge weights)

Prim’s Algorithm

prim(s) {

D[s] = 0; mark s; //start vertex Min “distance” to
while (some vertices are ) connected component

v = unmarked vertex with smallest D; <
mark v;
for (each w adj to v) {

D[w] = min(D[w], c(v,w));
}
}
}
* 0(n?) for adj matrix * O(m + n log n) for adj list
— While-loop is executed n times —UseaPQ

— Regular PQ produces time O(n + m log m)
— Can improve to O(m + n log n) using a
fancier heap

— For-loop takes O(n) time

Greedy Algorithms

* These are examples of ¢ Example “Change Making”:

— Given an amount of money,
find the smallest number of
coins to make that amount

Solution: Greedy Algorithm
— Give as many large coins as you

* The Greedy Strategy is an
algorithm design technique
— Like Divide & Conquer
* Greedy algorithms are used to
solve optimization problems

— The goal is to find the best
solution

— This greedy strategy produces
the optimum number of coins
for the US coin system

* Works when the problem has « Different money system =
the greedy-choice property greedy strategy may fail

— Aglobal optimum can be
reached by making locally
optimum choices

Similar Code Structures

* BFS (unweighted)

while (some vertices are —best: next in queue
unmarked) { —update: D[w] = D[v]+1

v = best of unmarked * BFS (weighted) > Dijkstra

vertices; )
—best: next in PQ
mark v; .
for (each w adj to v) —update: D[w] = min{ D[w], D[v]+c(v,w) }
update w; *Prim
} —best: next in PQ

—update: D[w] = min{ D[w], c(v,w) }

Other Graph Problems
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Network Flow

* How many “units” can flow from s to t?
— Flow in water network
— Traffic flow

- Ford-Fulkerson Algorithm

Minimum Cut

e Cut graph so that Source and Sink are separated, and
the sum of the edges that are cut is minimized.
— Traffic bottlenecks
— Clustering in social networks

- Duality with Maximum Flow

Traveling Salesperson

* Find a path of minimum distance that visits every city.
— Planning and logistics
— Microchip design

Boston

lthaca

Atlantad

— NP-Hard = there is probably no O(n¥) algorithms




