6/15/2011

CS/ENGRD 2110
Object-Oriented Programming

and Data Structures
Spring 2011
Thorsten Joachims

Lecture 20: Other
Algorithms on Graphs

Minimum Spanning Trees

¢ Example Problem:
— Nodes = neighborhoods

— Edges = possible cable
routes

— Goal: Find lowest cost
network that connects all
neighborhoods

* Analogously:
— Router network
— Clustering

— Component in many
approximation algorithms

Undirected Trees

* An undirected graph is a tree if there is exactly
one (simple) path between any pair of vertices

Facts About Trees

* Properties of trees
—|El=|V|-1
— Connected
— no cycles

* In fact, any two of
these properties
imply the third, and
imply that the
graph is a tree

Spanning Trees

* A spanning tree of a connected undirected
graph (V,E) is a subgraph (V,E') that is a tree
— Same set of vertices V
—E'CE - o

—(V,E')is atree . »

Finding a Spanning Tree

* Asubtractive method

— Start with the whole
graph —itis connected

— Find a cycle (how?), pick
an edge on the cycle and
throw it out
- the graph is still
connected (why?)

— Repeat until no more
cycles

6/15/2011

Finding a Spanning Tree

* A subtractive method

— Start with the whole
graph — it is connected

— Find a cycle (how?), pick
an edge on the cycle and
throw it out
- the graph is still
connected (why?)

— Repeat until no more
cycles

Finding a Spanning Tree

* A subtractive method

— Start with the whole
graph —itis connected

— Find a cycle (how?), pick
an edge on the cycle and
throw it out
- the graph is still
connected (why?)

— Repeat until no more
cycles

Finding a Spanning Tree

* An additive method

— Start with no edges —
there are no cycles

— Find connected
components (how?).

— If more than one
connected component, .
insertan edge between .
them . .
—still no cycles (why?) v,

— Repeat until only one
component

Finding a Spanning Tree

* An additive method

— Start with no edges —
there are no cycles
— Find connected
components (how?).
— If more than one
connected component, .
insert an edge between .
them . .
—still no cycles (why?)
— Repeat until only one
component

Finding a Spanning Tree

* An additive method
— Start with no edges —
there are no cycles

— Find connected
components (how?).

L 3 .
— If more than one w
connected component, 0
insert an edge between /
them . . >
—>still no cycles (why?) o v, v
— Repeat until only one \ v

component

Finding a Spanning Tree

* An additive method
— Start with no edges —
there are no cycles
— Find connected
components (how?).

.
— If more than one \
connected component, ~ .
insert an edge between .
them . . »
—>still no cycles (why?) « i v
— Repeat until only one \ v

component

6/15/2011

Finding a Spanning Tree

* An additive method

— Start with no edges —
there are no cycles

— Find connected

Finding a Spanning Tree

* An additive method

— Start with no edges —
there are no cycles

— Find connected

components (how?). . o components (how?). . o
— If more than one w — If more than one w
connected component, £) connected component, 0 .
insert an edge between insert an edge between .
them e — y them < . >
-still no cycles (why?) . v, v =still no cycles (why?) . v v
— Repeat until only one — Repeat until only one
. . L2 L
component A component .
Minimum Spanning Trees 3 Greedy Algorithms

* Suppose edges are weighted, and we want a
spanning tree of minimum cost (sum of edge
weights)

* Algorithm A: Find a max weight edge —if it is
on a cycle, throw it out, otherwise keep it

3 Greedy Algorithms

* Algorithm A: Find a max weight edge — if it is
on a cycle, throw it out, otherwise keep it

3 Greedy Algorithms

* Algorithm A: Find a max weight edge —if it is
on a cycle, throw it out, otherwise keep it

6/15/2011

3 Greedy Algorithms

¢ Algorithm A: Find a max weight edge — if it is
on a cycle, throw it out, otherwise keep it

3 Greedy Algorithms

* Algorithm A: Find a max weight edge —if it is
on a cycle, throw it out, otherwise keep it

3 Greedy Algorithms

¢ Algorithm A: Find a max weight edge —if it is
on a cycle, throw it out, otherwise keep it

3 Greedy Algorithms

* Algorithm A: Find a max weight edge —if it is
on a cycle, throw it out, otherwise keep it

3 Greedy Algorithms

* Algorithm A: Find a max weight edge — if it is
on a cycle, throw it out, otherwise keep it

3 Greedy Algorithms

* Algorithm B: Find a min weight edge — if it
forms a cycle with edges already taken, throw
it out, otherwise keep it

Kruskal's a
algorithm . A

6/15/2011

3 Greedy Algorithms

¢ Algorithm B: Find a min weight edge — if it
forms a cycle with edges already taken, throw
it out, otherwise keep it

3 Greedy Algorithms

* Algorithm B: Find a min weight edge — if it
forms a cycle with edges already taken, throw
it out, otherwise keep it

Kruskal's . Kruskal's »
algorithm </ [=T . algorithm < L =T .
3 Greedy Algorithms 3 Greedy Algorithms

¢ Algorithm B: Find a min weight edge — if it
forms a cycle with edges already taken, throw
it out, otherwise keep it

 Algorithm B: Find a min weight edge — if it
forms a cycle with edges already taken, throw
it out, otherwise keep it

Kruskal's f . Kruskal's ! »
algorithm o~ [=T . algorithm o~ L =T .
3 Greedy Algorithms

* Algorithm B: Find a min weight edge — if it
forms a cycle with edges already taken, throw
it out, otherwise keep it

BN
\g*\

Kruskal's
algorithm

3 Greedy Algorithms

* Algorithm B: Find a min weight edge — if it
forms a cycle with edges already taken, throw
it out, otherwise keep it

Kruskal's
algorithm

6/15/2011

3 Greedy Algorithms

¢ Algorithm C: Start with any vertex, add min
weight edge extending that connected
component that does not form a cycle

3 Greedy Algorithms

* Algorithm C: Start with any vertex, add min
weight edge extending that connected
component that does not form a cycle

Prim's algorithm A ! ~ Prim's algorithm r i A
3 Greedy Algorithms 3 Greedy Algorithms

* Algorithm C: Start with any vertex, add min
weight edge extending that connected
component that does not form a cycle

* Algorithm C: Start with any vertex, add min
weight edge extending that connected
component that does not form a cycle

Prim's algorithm A ! ~ Prim's algorithm A i A
3 Greedy Algorithms 3 Greedy Algorithms

* Algorithm C: Start with any vertex, add min
weight edge extending that connected
component that does not form a cycle

Prim's algorithm o

* Algorithm C: Start with any vertex, add min
weight edge extending that connected
component that does not form a cycle

Prim's algorithm

6/15/2011

3 Greedy Algorithms
¢ Algorithm C: Start with any vertex, add min

weight edge extending that connected
component that does not form a cycle

Prim's algorithm

3 Greedy Algorithms

* All 3 greedy algorithms give the same
minimum spanning tree (assuming distinct
edge weights)

Prim’s Algorithm

prim(s) {

D[s] = 0; mark s; //start vertex Min “distance” to
while (some vertices are) connected component

v = unmarked vertex with smallest D; <
mark v;
for (each w adj to v) {

D[w] = min(D[w], c(v,w));
}
}
}
* 0(n?) for adj matrix * O(m + n log n) for adj list
— While-loop is executed n times —UseaPQ

— Regular PQ produces time O(n + m log m)
— Can improve to O(m + n log n) using a
fancier heap

— For-loop takes O(n) time

Greedy Algorithms

* These are examples of ¢ Example “Change Making”:

— Given an amount of money,
find the smallest number of
coins to make that amount

Solution: Greedy Algorithm
— Give as many large coins as you

* The Greedy Strategy is an
algorithm design technique
— Like Divide & Conquer
* Greedy algorithms are used to
solve optimization problems

— The goal is to find the best
solution

— This greedy strategy produces
the optimum number of coins
for the US coin system

* Works when the problem has « Different money system =
the greedy-choice property greedy strategy may fail

— Aglobal optimum can be
reached by making locally
optimum choices

Similar Code Structures

* BFS (unweighted)

while (some vertices are —best: next in queue
unmarked) { —update: D[w] = D[v]+1

v = best of unmarked * BFS (weighted) > Dijkstra

vertices;)
—best: next in PQ
mark v; .
for (each w adj to v) —update: D[w] = min{ D[w], D[v]+c(v,w) }
update w; *Prim
} —best: next in PQ

—update: D[w] = min{ D[w], c(v,w) }

Other Graph Problems

6/15/2011

Network Flow

* How many “units” can flow from s to t?
— Flow in water network
— Traffic flow

- Ford-Fulkerson Algorithm

Minimum Cut

e Cut graph so that Source and Sink are separated, and
the sum of the edges that are cut is minimized.
— Traffic bottlenecks
— Clustering in social networks

- Duality with Maximum Flow

Traveling Salesperson

* Find a path of minimum distance that visits every city.
— Planning and logistics
— Microchip design

Boston

lthaca

Atlantad

— NP-Hard = there is probably no O(n¥) algorithms

