
6/15/2011

1

CS/ENGRD 2110
Object-Oriented Programming

and Data Structures
Spring 2011

Thorsten Joachims

Lecture 20: Other
Algorithms on Graphs

Minimum Spanning Trees

• Example Problem:
– Nodes = neighborhoods
– Edges = possible cable

routes
– Goal: Find lowest cost

network that connects all
neighborhoods

• Analogously:
– Router network
– Clustering
– Component in many

approximation algorithms

33

4

13

9

6
32

40

7

21

15

100

1

2

5

66

22 28
24

34

72

64

8

25

54

101

62

11

12
27

49 51

3

10

14

16

Undirected Trees

• An undirected graph is a tree if there is exactly
one (simple) path between any pair of vertices

Facts About Trees

• Properties of trees
– |E| = |V| – 1

– Connected

– no cycles

• In fact, any two of
these properties
imply the third, and
imply that the
graph is a tree

Spanning Trees

• A spanning tree of a connected undirected
graph (V,E) is a subgraph (V,E') that is a tree

– Same set of vertices V

– E' ⊆ E

– (V,E') is a tree

Finding a Spanning Tree

• A subtractive method

– Start with the whole
graph – it is connected

– Find a cycle (how?), pick
an edge on the cycle and
throw it out
 the graph is still
connected (why?)

– Repeat until no more
cycles

6/15/2011

2

Finding a Spanning Tree

• A subtractive method

– Start with the whole
graph – it is connected

– Find a cycle (how?), pick
an edge on the cycle and
throw it out
 the graph is still
connected (why?)

– Repeat until no more
cycles

Finding a Spanning Tree

• A subtractive method

– Start with the whole
graph – it is connected

– Find a cycle (how?), pick
an edge on the cycle and
throw it out
 the graph is still
connected (why?)

– Repeat until no more
cycles

Finding a Spanning Tree

• An additive method
– Start with no edges –

there are no cycles

– Find connected
components (how?).

– If more than one
connected component,
insert an edge between
them
still no cycles (why?)

– Repeat until only one
component

Finding a Spanning Tree

• An additive method
– Start with no edges –

there are no cycles

– Find connected
components (how?).

– If more than one
connected component,
insert an edge between
them
still no cycles (why?)

– Repeat until only one
component

Finding a Spanning Tree

• An additive method
– Start with no edges –

there are no cycles

– Find connected
components (how?).

– If more than one
connected component,
insert an edge between
them
still no cycles (why?)

– Repeat until only one
component

Finding a Spanning Tree

• An additive method
– Start with no edges –

there are no cycles

– Find connected
components (how?).

– If more than one
connected component,
insert an edge between
them
still no cycles (why?)

– Repeat until only one
component

6/15/2011

3

Finding a Spanning Tree

• An additive method
– Start with no edges –

there are no cycles

– Find connected
components (how?).

– If more than one
connected component,
insert an edge between
them
still no cycles (why?)

– Repeat until only one
component

Finding a Spanning Tree

• An additive method
– Start with no edges –

there are no cycles

– Find connected
components (how?).

– If more than one
connected component,
insert an edge between
them
still no cycles (why?)

– Repeat until only one
component

Minimum Spanning Trees

• Suppose edges are weighted, and we want a
spanning tree of minimum cost (sum of edge
weights)

33

4

13

9

6
32

40

7

21

15

100

1

2

5

66

22 28
24

34

72

64

8

25

54

101

62

11

12
27

49 51

3

10

14

16

3 Greedy Algorithms

• Algorithm A: Find a max weight edge – if it is
on a cycle, throw it out, otherwise keep it

33

4

13

9

6
32

40

7

21

15

100

1

2

5

66

22 28
24

34

72

64

8

25

54

101

62

11

12
27

49 51

3

10

14

16

3 Greedy Algorithms

• Algorithm A: Find a max weight edge – if it is
on a cycle, throw it out, otherwise keep it

33

4

13

9

6
32

40

7

21

15

100

1

2

5

66

22 28
24

34

72

64

8

25

54

101

62

11

12
27

49 51

3

10

14

16

3 Greedy Algorithms

• Algorithm A: Find a max weight edge – if it is
on a cycle, throw it out, otherwise keep it

33

4

13

9

6
32

40

7

21

15

100

1

2

5

66

22 28
24

34

72

64

8

25

54

62

11

12
27

49 51

3

10

14

16

6/15/2011

4

3 Greedy Algorithms

• Algorithm A: Find a max weight edge – if it is
on a cycle, throw it out, otherwise keep it

33

4

13

9

6
32

40

7

21

15

100

1

2

5

66

22 28
24

34

72

64

8

25

54

62

11

12
27

49 51

3

10

14

16

3 Greedy Algorithms

• Algorithm A: Find a max weight edge – if it is
on a cycle, throw it out, otherwise keep it

33

4

13

9

6
32

40

7

21

15

1

2

5

66

22 28
24

34

72

64

8

25

54

62

11

12
27

49 51

3

10

14

16

3 Greedy Algorithms

• Algorithm A: Find a max weight edge – if it is
on a cycle, throw it out, otherwise keep it

4

13

9

6

7

21

15

1

2

5

22 24

8

25

54

11

12

3

10

14

16

3 Greedy Algorithms

• Algorithm A: Find a max weight edge – if it is
on a cycle, throw it out, otherwise keep it

4

13

9

6

7

15

1

2

5

8

25

54

11

12

3

10

14

16

3 Greedy Algorithms

• Algorithm A: Find a max weight edge – if it is
on a cycle, throw it out, otherwise keep it

14

4

9

6

7

1

2

5

8

25

54

11

12

10

16

3 Greedy Algorithms

• Algorithm B: Find a min weight edge – if it
forms a cycle with edges already taken, throw
it out, otherwise keep it

33

4

13

9

6
32

40

7

21

15

100

1

2

5

66

22 28
24

34

72

64

8

25

54

101

62

11

12
27

49 51

3

10

Kruskal's

algorithm

14

16

6/15/2011

5

3 Greedy Algorithms

• Algorithm B: Find a min weight edge – if it
forms a cycle with edges already taken, throw
it out, otherwise keep it

33

4

13

9

6
32

40

7

21

15

100

1

2

5

66

22 28
24

34

72

64

8

25

54

101

62

11

12
27

49 51

3

10

Kruskal's

algorithm

14

16

3 Greedy Algorithms

• Algorithm B: Find a min weight edge – if it
forms a cycle with edges already taken, throw
it out, otherwise keep it

33

4

13

9

6
32

40

7

21

15

100

1

2

5

66

22 28
24

34

72

64

8

25

54

101

62

11

12
27

49 51

3

10

Kruskal's

algorithm

14

16

3 Greedy Algorithms

• Algorithm B: Find a min weight edge – if it
forms a cycle with edges already taken, throw
it out, otherwise keep it

33

4

13

9

6
32

40

7

21

15

100

1

2

5

66

22 28
24

34

72

64

8

25

54

101

62

11

12
27

49 51

3

10

Kruskal's

algorithm

14

16

3 Greedy Algorithms

• Algorithm B: Find a min weight edge – if it
forms a cycle with edges already taken, throw
it out, otherwise keep it

33

14

4

13

9

6
32

40

7

21

15

100

1

2

5

66

22 28
24

34

72

64

8

25

54

101

62

11

12
27

49 51

3

10

Kruskal's

algorithm

16

3 Greedy Algorithms

• Algorithm B: Find a min weight edge – if it
forms a cycle with edges already taken, throw
it out, otherwise keep it

33

14

4

13

9

6
32

40

7

21

15

100

1

2

5

66

22 28
24

34

72

64

8

25

54

101

62

11

12
27

49 51

3

10

Kruskal's

algorithm

16

3 Greedy Algorithms

• Algorithm B: Find a min weight edge – if it
forms a cycle with edges already taken, throw
it out, otherwise keep it

33

14

4

13

9

6
32

40

7

16

21

15

100

1

2

5

66

22 28
24

34

72

64

8

25

54

101

62

11

12
27

49 51

3

10

Kruskal's

algorithm

6/15/2011

6

3 Greedy Algorithms

• Algorithm C: Start with any vertex, add min
weight edge extending that connected
component that does not form a cycle

33

14

4

13

9

6
32

40

7

16

21

15

100

1

2

5

66

22 28
24

34

72

64

8

25

54

101

62

11

12
27

49 51

3

10

Prim's algorithm

3 Greedy Algorithms

• Algorithm C: Start with any vertex, add min
weight edge extending that connected
component that does not form a cycle

33

14

4

13

9

6
32

40

7

16

21

15

100

1

2

5

66

22 28
24

34

72

64

8

25

54

101

62

11

12
27

49 51

3

10

Prim's algorithm

3 Greedy Algorithms

• Algorithm C: Start with any vertex, add min
weight edge extending that connected
component that does not form a cycle

33

14

4

13

9

6
32

40

7

16

21

15

100

1

2

5

66

22 28
24

34

72

64

8

25

54

101

62

11

12
27

49 51

3

10

Prim's algorithm

3 Greedy Algorithms

• Algorithm C: Start with any vertex, add min
weight edge extending that connected
component that does not form a cycle

33

14

4

13

9

6
32

40

7

16

21

15

100

1

2

5

66

22 28
24

34

72

64

8

25

54

101

62

11

12
27

49 51

3

10

Prim's algorithm

3 Greedy Algorithms

• Algorithm C: Start with any vertex, add min
weight edge extending that connected
component that does not form a cycle

33

14

4

13

9

6
32

40

7

16

21

15

100

1

2

5

66

22 28
24

34

72

64

8

25

54

101

62

11

12
27

49 51

3

10

Prim's algorithm

3 Greedy Algorithms

• Algorithm C: Start with any vertex, add min
weight edge extending that connected
component that does not form a cycle

33

14

4

13

9

6
32

40

7

16

21

15

100

1

2

5

66

22 28
24

34

72

64

8

25

54

101

62

11

12
27

49 51

3

10

Prim's algorithm

6/15/2011

7

3 Greedy Algorithms

• Algorithm C: Start with any vertex, add min
weight edge extending that connected
component that does not form a cycle

Prim's algorithm 33

14

4

13

9

6
32

40

7

16

21

15

100

1

2

5

66

22 28
24

34

72

64

8

25

54

101

62

11

12
27

49 51

3

10

3 Greedy Algorithms

• All 3 greedy algorithms give the same
minimum spanning tree (assuming distinct
edge weights)

14

4

9

6

7

1

2

5

8

25

54

11

12

10

16

Prim’s Algorithm

• O(m + n log n) for adj list

– Use a PQ

– Regular PQ produces time O(n + m log m)

– Can improve to O(m + n log n) using a
fancier heap

prim(s) {

D[s] = 0; mark s; //start vertex

while (some vertices are unmarked) {

v = unmarked vertex with smallest D;

mark v;

for (each w adj to v) {

D[w] = min(D[w], c(v,w));

}

}

}

• O(n2) for adj matrix

– While-loop is executed n times

– For-loop takes O(n) time

Min “distance” to

connected component

Greedy Algorithms

• These are examples of Greedy
Algorithms

• The Greedy Strategy is an
algorithm design technique
– Like Divide & Conquer

• Greedy algorithms are used to
solve optimization problems
– The goal is to find the best

solution

• Works when the problem has
the greedy-choice property
– A global optimum can be

reached by making locally
optimum choices

• Example “Change Making”:
– Given an amount of money,

find the smallest number of
coins to make that amount

• Solution: Greedy Algorithm
– Give as many large coins as you

can
– This greedy strategy produces

the optimum number of coins
for the US coin system

• Different money system ⇒
greedy strategy may fail

Similar Code Structures

while (some vertices are

unmarked) {

v = best of unmarked

vertices;

mark v;

for (each w adj to v)

update w;

}

• BFS (unweighted)

–best: next in queue

–update: D[w] = D[v]+1

• BFS (weighted)  Dijkstra

–best: next in PQ

–update: D[w] = min{ D[w], D[v]+c(v,w) }

• Prim

–best: next in PQ

–update: D[w] = min{ D[w], c(v,w) }

Other Graph Problems

6/15/2011

8

Network Flow

• How many “units” can flow from s to t?
– Flow in water network

– Traffic flow

 Ford-Fulkerson Algorithm

Minimum Cut

• Cut graph so that Source and Sink are separated, and
the sum of the edges that are cut is minimized.
– Traffic bottlenecks

– Clustering in social networks

 Duality with Maximum Flow

Traveling Salesperson

• Find a path of minimum distance that visits every city.
– Planning and logistics

– Microchip design

– NP-Hard  there is probably no O(nk) algorithms

45

Amsterdam

Rome

Boston

Atlanta

London

Paris

Copenhagen

Munich

Ithaca

New York

Washington

1202

1380

1214

1322

1356

1002

512

216

441

189
160

15561323

419

210

224 132

660 505

1078

