

Introduction to Graphs

CS2110, Spring 2011
Cornell University

A graph is a data structure for
representing relationships.

Each graph is a set of nodes
connected by edges.

Nifty Cool

Sharp

Chilly

ComposedAbrupt

Hostile

Direct

Slick Icy

Synonym Graph

Goals for Today

● Learn the formalisms behind graphs.
● Learn different representations for graphs.
● Learn about paths and cycles in graphs.
● See three ways of exploring a graph.
● Explore applications of graphs to real-world

problems.
● Explore algorithms for drawing graphs.

Formalisms

● A (directed) graph is a pair G = (V, E) where
● V are the vertices (nodes) of the graph.
● E are the edges (arcs) of the graph.

● Each edge is a pair (u, v) of the start and end
(or source and sink) of the edge.

CAT SAT RAT

RANMAN

MAT

CAN

Directed and Undirected Graphs

● A graph is directed if its edges specify which is
the start and end node.
● Encodes asymmetric relationship.

● A graph is undirected if the edges don't
distinguish between the start and end nodes.
● Encodes symmetric relationship.

● An undirected graph is a special case of a
directed graph (just add edges both ways).

How Big is a Graph G = (V, E)?

● Two measures:
● Number of vertices: |V| (often denoted n)
● Number of edges: |E| (often denoted m)

● |E| can be at most O(|V|2)
● A graph is called sparse if it has few edges. A

graph with many edges is called dense.

Navigating a Graph

A

B D

C E

F

Navigating a Graph

A

B D

C E

F

Navigating a Graph

A

B D

C E

F

A B D F

Navigating a Graph

A

B D

C E

F

A C F

A path from v
0
 to v

n
 is a list of edges

(v
0
, v

1
), (v

1
, v

2
), …, (v

n-1
, v

n
).

The length of a path is the
number of edges it contains.

Navigating a Graph

A

B D

C E

F

Navigating a Graph

A

B D

C E

F

A node v is reachable from node u
if there is a path from u to v.

Navigating a Graph

A

B D

C E

F

Navigating a Graph

A

B D

C E

F

Navigating a Graph

A

B D

C E

F

B D B

Navigating a Graph

A

B D

C E

F

B D B D B

Navigating a Graph

A

B D

C E

F

Navigating a Graph

A

B D

C E

F

A B D B D F

A cycle in a graph is a set of edges

(v
0
, v

1
), (v

1
, v

2
), …, (v

n
, v

0
)

that starts and ends at the same node.

A simple path is a path that
does not contain a cycle.

A simple cycle is a cycle that
does not contain a smaller cycle

Properties of Nodes

A

B D

C E

F

The indegree of a node is the number of
edges entering that node.

The outdegree of a node is the number of
edges leaving that node.

In an undirected graph, these are the same and
are called the degree of the node.

Summary of Terminology

● A path is a series of edges connecting two nodes.
● The length of a path is the number of edges in the path.
● A node v is reachable from u if there is a path from u to v.

● A cycle is a path from a node to itself.

● A simple path is a path without a cycle.

● A simple cycle is a cycle that does not contain a nested
cycle.

● The indegree and outdegree of a node are the number of
edges entering/leaving it.

Representing Graphs

Adjacency Matrices

● n x n grid of boolean values.

● Element A
ij
 is 1 if edge from i

to j, 0 else.

● Memory usage is O(n2)

● Can check if an edge exists
in O(1).

● Can find all edges entering
or leaving a node in O(n).

A

B D

C E

F

0 1 1 0 0 0

0 0 0 1 0 0

A B C D E F

A

B

C

D

E

F

0 0 0 0 1 1

0 1 0 0 0 1

0 0 0 0 0 0

0 0 1 0 1 0

Adjacency Lists

A

B D

C E

F

A

B

C

D

E

F

B C

D

E F

FB

C E

● List of edges leaving
each node.

● Memory usage is
O(m+n)

● Find edges leaving a
node in O(d+ (u))

● Check if edge exists
in O(d+ (u))

Graph Algorithms

Representing Prerequisites

Graph

Path Cycle

Simple
Path

Simple
Cycle

Path
Length

Degree

Reachability

A directed acyclic graph (DAG) is a
directed graph with no cycles.

Examples of DAGs

Examples of DAGs

4

2 6

1 3 5 7

Examples of DAGs

Traversing a DAG

Graph

Path Cycle

Simple
Path

Simple
Cycle

Path
Length

Degree

Reachability

Traversing a DAG

Graph

Path Cycle

Simple
Path

Simple
Cycle

Path
Length

Degree

Reachability

Traversing a DAG

Path Cycle

Simple
Path

Simple
Cycle

Path
Length

Degree

Reachability

Graph

Traversing a DAG

Path Cycle

Simple
Path

Simple
Cycle

Path
Length

Degree

Reachability

Graph

Traversing a DAG

Path

Simple
Path

Simple
Cycle

Path
Length

Degree

Reachability

Cycle

Graph

Traversing a DAG

Path

Simple
Path

Simple
Cycle

Path
Length

Degree

Reachability

Cycle

Graph

Traversing a DAG

Path

Simple
Path

Simple
Cycle

Path
Length

Degree

Reachability

Cycle

Graph

Traversing a DAG

Path

Simple
Path

Simple
Cycle

Path
Length

Degree

Reachability

Cycle

Graph

Traversing a DAG

Simple
Path

Simple
Cycle

Path
Length

Degree

Reachability

Graph

Cycle

Path

Traversing a DAG

Simple
Path

Simple
Cycle

Path
Length

Degree

Reachability

Graph

Cycle

Path

Traversing a DAG

Simple
Path

Simple
Cycle

Path
Length

Degree

Reachability

Graph

Cycle

Path

Traversing a DAG

Simple
Path

Simple
Cycle

Path
Length

Degree

Reachability

Graph

Cycle

Path

Traversing a DAG

Simple
Path

Simple
Cycle

Path
Length

Degree

Reachability

Graph

Cycle

Path

Traversing a DAG

Simple
Path

Simple
Cycle

Path
Length

Degree

Reachability

Graph

Cycle

Path

Graph

Path Cycle

Simple
Path

Simple
Cycle

Path
Length

Degree

Reachability

Topological Sort

● Order the nodes of a DAG so no node is picked
before its parents.

● Algorithm:
● Find a node with no incoming edges (indegree 0)
● Remove it from the graph.
● Add it to the resulting ordering.

● Not necessarily unique.
● Question: When is it unique?

Analyzing Topological Sort

● Assumes at each step that the DAG has a node
with indegree zero. Is this always true?

● Claim one: Every DAG has such a node.
● Proof sketch: If this isn't true, then each node has at

least one incoming edge. Start at any node and keep
following backwards across that edge. Eventually you
will find the same node twice and have found a cycle.

● Claim two: Removing such a node leaves the
DAG a DAG.
● Proof sketch: If the resulting graph has a cycle, the old

graph had a cycle as well.

Traversing an Arbitrary Graph

Traversing an Arbitrary Graph

Traversing an Arbitrary Graph

Traversing an Arbitrary Graph

Traversing an Arbitrary Graph

Traversing an Arbitrary Graph

Traversing an Arbitrary Graph

Traversing an Arbitrary Graph

Traversing an Arbitrary Graph

Traversing an Arbitrary Graph

Traversing an Arbitrary Graph

Traversing an Arbitrary Graph

Traversing an Arbitrary Graph

Traversing an Arbitrary Graph

Traversing an Arbitrary Graph

Traversing an Arbitrary Graph

Traversing an Arbitrary Graph

Traversing an Arbitrary Graph

Traversing an Arbitrary Graph

Traversing an Arbitrary Graph

Traversing an Arbitrary Graph

Traversing an Arbitrary Graph

Traversing an Arbitrary Graph

Traversing an Arbitrary Graph

Traversing an Arbitrary Graph

Traversing an Arbitrary Graph

Traversing an Arbitrary Graph

Traversing an Arbitrary Graph

Traversing an Arbitrary Graph

Traversing an Arbitrary Graph

Traversing an Arbitrary Graph

Traversing an Arbitrary Graph

Traversing an Arbitrary Graph

Traversing an Arbitrary Graph

General Graph Search Algorithm

● Maintain a collection C of nodes to visit.
● Initialize C with some set of nodes.
● While C is not empty:

● Pick a node v out of C.
● Follow all outgoing edges from v, adding each

unvisited node found this way to C.

● Eventually explores all nodes reachable from
the starting set of nodes. (Why?)

Depth-First Search

● Specialization of the general search algorithm
where nodes to visit are put on a stack.

● Explores down a path as far as possible, then
backs up.

● Simple graph search algorithm useful for exploring
a complete graph.

● Useful as a subroutine in many important graph
algorithms.

● Runs in O(m + n) with adjacency lists, O(n2) with
adjacency matrix.

Depth-first search

A B

D E

C

F

Depth-first search

A B

D E

C

F

Stack

Depth-first search

A B

D E

C

F

Stack

A

Depth-first search

A B

D E

C

F

Stack

Depth-first search

A B

D E

C

F

Stack

B

E

Depth-first search

A B

D E

C

F

Stack

B

E

Depth-first search

A B

D E

C

F

Stack

B

Depth-first search

A B

D E

C

F

Stack

B

D

F

C

Depth-first search

A B

D E

C

F

Stack

B

D

F

C

Depth-first search

A B

D E

C

F

Stack

B

D

F

Depth-first search

A B

D E

C

F

Stack

B

D

F

Depth-first search

A B

D E

C

F

Stack

B

D

F

Depth-first search

A B

D E

C

F

Stack

B

D

Depth-first search

A B

D E

C

F

Stack

B

D

Depth-first search

A B

D E

C

F

Stack

B

Depth-first search

A B

D E

C

F

Stack

B

Depth-first search

A B

D E

C

F

Stack

Depth-first search

A B

D E

C

F

Stack

Implementing DFS

DFS(Node v, Set<Node> visited) {
 if (v is in visited) return;
 Add v to visited;

 for (Node u connected to v)
 DFS(u, visited);
}

Graph Search Trees

Graph Search Trees

Graph Search Trees

Graph Search Trees

Graph Search Trees

Graph Search Trees

Graph Search Trees

Graph Search Trees

Graph Search Trees

Graph Search Trees

Graph Search Trees

Graph Search Trees

Graph Search Trees

Graph Search Trees

Graph Search Trees

Graph Search Trees

Graph Search Trees

Graph Search Trees

Graph Search Trees

Graph Search Trees

Graph Search Trees

Mazes as Graphs

Mazes as Graphs

Mazes as Graphs

Mazes as Graphs

Creating a Maze with DFS

● Create a grid graph of the appropriate size.
● Starting at any node, run a depth-first search,

adding the arcs to the stack in random order.
● The resulting DFS tree is a maze with one

solution.

Problems with DFS

● Useful when trying to explore everything.
● Not good at finding specific nodes.

Problems with DFS

● Useful when trying to explore everything.
● Not good at finding specific nodes.

Stack

Problems with DFS

● Useful when trying to explore everything.
● Not good at finding specific nodes.

Stack

Problems with DFS

● Useful when trying to explore everything.
● Not good at finding specific nodes.

A

B

C

Stack

Problems with DFS

● Useful when trying to explore everything.
● Not good at finding specific nodes.

A

B

C

Stack

C

B

A

Problems with DFS

● Useful when trying to explore everything.
● Not good at finding specific nodes.

A

B

C

Stack

C

B

A

Breadth-First Search

● Specialization of the general search algorithm
where nodes to visit are put into a queue.

● Explores nodes one hop away, then two hops
away, etc.

● Finds path with fewest edges from start node to
all other nodes.

● Runs in O(m + n) with adjacency lists, O(n2)
with adjacency matrix.

Breadth-first search

A B

D E

C

F

Breadth-first search

A B

D E

C

F

Queue

Breadth-first search

A B

D E

C

F

Queue A

Breadth-first search

A B

D E

C

F

Queue

Breadth-first search

A B

D E

C

F

Queue B E

Breadth-first search

A B

D E

C

F

Queue B E

Breadth-first search

A B

D E

C

F

Queue E

Breadth-first search

A B

D E

C

F

Queue E C

Breadth-first search

A B

D E

C

F

Queue E C

Breadth-first search

A B

D E

C

F

Queue C

Breadth-first search

A B

D E

C

F

Queue C D F

Breadth-first search

A B

D E

C

F

Queue C D F

Breadth-first search

A B

D E

C

F

Queue D F

Breadth-first search

A B

D E

C

F

Queue D F

Breadth-first search

A B

D E

C

F

Queue F

Breadth-first search

A B

D E

C

F

Queue F

Breadth-first search

A B

D E

C

F

Queue

Breadth-first search

A B

D E

C

F

Queue

Implementing BFS

BFS(Node v, Set<Node> visited) {
 Create a Queue<Node> of nodes to visit;
 Add v to the queue;

 while (The queue is not empty) {
 Dequeue a node from the queue, let it be u;

 if (u has been visited) continue;
 Add u to the visited set;

 for (Node w connected to u)
 Enqueue w in the queue;
 }
}

Classic Graph Algorithms

Graph Coloring

● Given a graph G, assign colors to the nodes so
that no edge has endpoints of the same color.

● The chromatic number of a graph is the
fewest number of colors needed to color it.

Graph Coloring is Hard.

● Determining whether a graph can be colored
with k colors (for k > 2) is NP-complete.

● It is not known whether this problem can be
solved in polynomial time.

● Want $1,000,000? Find a polynomial-time
algorithm or prove that none exists.

Matching

● A matching in a graph is a subset of the edges
that don't share any endpoints.

● Intuitively, pairing up nodes in the graph.

Matching

● A matching in a graph is a subset of the edges
that don't share any endpoints.

● Intuitively, pairing up nodes in the graph.

Applications of Matching

● Unlike graph coloring, matching can be done
quickly.

● Sample application: divvying up desserts.

Divvying Up Desserts

Divvying Up Desserts

Divvying Up Desserts

Divvying Up Desserts

Divvying Up Desserts

Divvying Up Desserts

3 7

Divvying Up Desserts

3 7
 4
 6

Divvying Up Desserts

3 7
 4

 6 2 8

Divvying Up Desserts

3 7
 4

 6 2 85 5

Divvying Up Desserts

3 6 8 5

Drawing Graphs

Nifty Cool

Sharp

Chilly

ComposedAbrupt

Hostile

Direct

Slick Icy

Nifty Cool

Sharp

Chilly

Composed

Abrupt

Hostile

Direct

Slick

Icy

Idea: Treat the graph as a physical system
that exerts forces on itself.

This is called a force-directed layout algorithm.

Summary

● Graphs are a powerful abstraction for modeling relationships
and connectivity.

● Adjacency lists and adjacency matrices are two common
representations of graphs.

● Directed acyclic graphs can be visited via a topological sort.

● Depth-first search is a simple graph exploration algorithm.

● Breadth-first search searches a graph one layer at a time.

● There are many classic algorithms on graphs:
● Graph coloring tries to color nodes so no two nodes of the same color

are connected.
● Matchings represent pairing up of graph elements.
● Graph drawing seeks to render aesthetically-pleasing graphs.

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Slide 73
	Slide 74
	Slide 75
	Slide 76
	Slide 77
	Slide 78
	Slide 79
	Slide 80
	Slide 81
	Slide 82
	Slide 83
	Slide 84
	Slide 85
	Slide 86
	Slide 87
	Slide 88
	Slide 89
	Slide 90
	Slide 91
	Slide 92
	Slide 93
	Slide 94
	Slide 95
	Slide 96
	Slide 97
	Slide 98
	Slide 99
	Slide 100
	Slide 101
	Slide 102
	Slide 103
	Slide 104
	Slide 105
	Slide 106
	Slide 107
	Slide 108
	Slide 109
	Slide 110
	Slide 111
	Slide 112
	Slide 113
	Slide 114
	Slide 115
	Slide 116
	Slide 117
	Slide 118
	Slide 119
	Slide 120
	Slide 121
	Slide 122
	Slide 123
	Slide 124
	Slide 125
	Slide 126
	Slide 127
	Slide 128
	Slide 129
	Slide 130
	Slide 131
	Slide 132
	Slide 133
	Slide 134
	Slide 135
	Slide 136
	Slide 137
	Slide 138
	Slide 139
	Slide 140
	Slide 141
	Slide 142
	Slide 143
	Slide 144
	Slide 145
	Slide 146
	Slide 147
	Slide 148
	Slide 149
	Slide 150
	Slide 151
	Slide 152
	Slide 153
	Slide 154
	Slide 155
	Slide 156
	Slide 157
	Slide 158
	Slide 159
	Slide 160
	Slide 161
	Slide 162
	Slide 163
	Slide 164
	Slide 165
	Slide 166
	Slide 167
	Slide 168
	Slide 169
	Slide 170
	Slide 171
	Slide 172
	Slide 173
	Slide 174
	Slide 175
	Slide 176
	Slide 177
	Slide 178
	Slide 179
	Slide 180
	Slide 181
	Slide 182
	Slide 183
	Slide 184
	Slide 185
	Slide 186
	Slide 187
	Slide 188
	Slide 189
	Slide 190
	Slide 191
	Slide 192
	Slide 193

