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A graph is a data structure for 
representing relationships.



  

Each graph is a set of nodes 
connected by edges.
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Goals for Today

● Learn the formalisms behind graphs.
● Learn different representations for graphs.
● Learn about paths and cycles in graphs.
● See three ways of exploring a graph.
● Explore applications of graphs to real-world 

problems.
● Explore algorithms for drawing graphs.



  

Formalisms

● A (directed) graph is a pair G = (V, E) where
● V are the vertices (nodes) of the graph.
● E are the edges (arcs) of the graph.

● Each edge is a pair (u, v) of the start and end 
(or source and sink) of the edge.
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Directed and Undirected Graphs

● A graph is directed if its edges specify which is 
the start and end node.
● Encodes asymmetric relationship.

● A graph is undirected if the edges don't 
distinguish between the start and end nodes.
● Encodes symmetric relationship.

● An undirected graph is a special case of a 
directed graph (just add edges both ways).



  

How Big is a Graph G = (V, E)?

● Two measures:
● Number of vertices: |V| (often denoted n)
● Number of edges: |E| (often denoted m)

● |E| can be at most O(|V|2)
● A graph is called sparse if it has few edges.  A 

graph with many edges is called dense.
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A path from v
0
 to v

n
 is a list of edges 

(v
0
, v

1
), (v

1
, v

2
), …, (v

n-1
, v

n
).



  

The length of a path is the 
number of edges it contains.
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A node v is reachable from node u
if there is a path from u to v.
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A cycle in a graph is a set of edges
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that starts and ends at the same node.



  

A simple path is a path that 
does not contain a cycle.

A simple cycle is a cycle that 
does not contain a smaller cycle



  

Properties of Nodes
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The indegree of a node is the number of
edges entering that node.

The outdegree of a node is the number of
edges leaving that node.

In an undirected graph, these are the same and 
are called the degree of the node.



  

Summary of Terminology

● A path is a series of edges connecting two nodes.
● The length of a path is the number of edges in the path.
● A node v is reachable from u if there is a path from u to v.

● A cycle is a path from a node to itself.

● A simple path is a path without a cycle.

● A simple cycle is a cycle that does not contain a nested 
cycle.

● The indegree and outdegree of a node are the number of 
edges entering/leaving it.



  

Representing Graphs



  

Adjacency Matrices

● n x n grid of boolean values.

● Element A
ij
 is 1 if edge from i 

to j, 0 else.

● Memory usage is O(n2)

● Can check if an edge exists 
in O(1).

● Can find all edges entering 
or leaving a node in O(n).
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Adjacency Lists
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● List of edges leaving 
each node.

● Memory usage is 
O(m+n)

● Find edges leaving a 
node in O(d+ (u))

● Check if edge exists 
in O(d+ (u))



  

Graph Algorithms



  

Representing Prerequisites

Graph

Path Cycle

Simple
Path

Simple
Cycle

Path
Length

Degree

Reachability



  

A directed acyclic graph (DAG) is a 
directed graph with no cycles.
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Traversing a DAG
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Topological Sort

● Order the nodes of a DAG so no node is picked 
before its parents.

● Algorithm:
● Find a node with no incoming edges (indegree 0)
● Remove it from the graph.
● Add it to the resulting ordering.

● Not necessarily unique.
● Question: When is it unique?



  

Analyzing Topological Sort

● Assumes at each step that the DAG has a node 
with indegree zero.  Is this always true?

● Claim one: Every DAG has such a node.
● Proof sketch: If this isn't true, then each node has at 

least one incoming edge.  Start at any node and keep 
following backwards across that edge.  Eventually you 
will find the same node twice and have found a cycle.

● Claim two: Removing such a node leaves the 
DAG a DAG.
● Proof sketch: If the resulting graph has a cycle, the old 

graph had a cycle as well.
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General Graph Search Algorithm

● Maintain a collection C of nodes to visit.
● Initialize C with some set of nodes.
● While C is not empty:

● Pick a node v out of C.
● Follow all outgoing edges from v, adding each 

unvisited node found this way to C.

● Eventually explores all nodes reachable from 
the starting set of nodes. (Why?)



  

Depth-First Search

● Specialization of the general search algorithm 
where nodes to visit are put on a stack.

● Explores down a path as far as possible, then 
backs up.

● Simple graph search algorithm useful for exploring 
a complete graph.

● Useful as a subroutine in many important graph 
algorithms.

● Runs in O(m + n) with adjacency lists, O(n2 ) with 
adjacency matrix.
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Implementing DFS

DFS(Node v, Set<Node> visited) {
    if (v is in visited) return;
    Add v to visited;

    for (Node u connected to v)
        DFS(u, visited);
}
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Creating a Maze with DFS

● Create a grid graph of the appropriate size.
● Starting at any node, run a depth-first search, 

adding the arcs to the stack in random order.
● The resulting DFS tree is a maze with one 

solution.



  

Problems with DFS

● Useful when trying to explore everything.
● Not good at finding specific nodes.
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Breadth-First Search

● Specialization of the general search algorithm 
where nodes to visit are put into a queue.

● Explores nodes one hop away, then two hops 
away, etc.

● Finds path with fewest edges from start node to 
all other nodes.

● Runs in O(m + n) with adjacency lists, O(n2 ) 
with adjacency matrix.
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Implementing BFS

BFS(Node v, Set<Node> visited) {
   Create a Queue<Node> of nodes to visit;
   Add v to the queue;

   while (The queue is not empty) {
      Dequeue a node from the queue, let it be u;

      if (u has been visited) continue;
      Add u to the visited set;
   
      for (Node w connected to u)
         Enqueue w in the queue;
   }
}



  

Classic Graph Algorithms



  

Graph Coloring

● Given a graph G, assign colors to the nodes so 
that no edge has endpoints of the same color.

● The chromatic number of a graph is the 
fewest number of colors needed to color it.



  

Graph Coloring is Hard.

● Determining whether a graph can be colored 
with k colors (for k > 2) is NP-complete.

● It is not known whether this problem can be 
solved in polynomial time.

● Want $1,000,000?  Find a polynomial-time 
algorithm or prove that none exists.



  

Matching

● A matching in a graph is a subset of the edges 
that don't share any endpoints.

● Intuitively, pairing up nodes in the graph.



  

Matching

● A matching in a graph is a subset of the edges 
that don't share any endpoints.

● Intuitively, pairing up nodes in the graph.



  

Applications of Matching

● Unlike graph coloring, matching can be done 
quickly.

● Sample application: divvying up desserts.
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Drawing Graphs
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Idea: Treat the graph as a physical system
that exerts forces on itself.



  

This is called a force-directed layout algorithm.



  

Summary

● Graphs are a powerful abstraction for modeling relationships 
and connectivity.

● Adjacency lists and adjacency matrices are two common 
representations of graphs.

● Directed acyclic graphs can be visited via a topological sort.

● Depth-first search is a simple graph exploration algorithm.

● Breadth-first search searches a graph one layer at a time.

● There are many classic algorithms on graphs:
● Graph coloring tries to color nodes so no two nodes of the same color 

are connected.
● Matchings represent pairing up of graph elements.
● Graph drawing seeks to render aesthetically-pleasing graphs.
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