
2/14/2011

1

GRAMMARS & PARSING
Lecture 7

CS2110 – Fall 2009

Java Tips
2

 Declare fields and methods public

if they are to be visible outside the
class; helper methods and private
data should be declared private

 Constants that will never be changed
should be declared final

 Public classes should appear in a file
of the same name

 Two kinds of boolean operators:

 e1 & e2: evaluate both and
compute their conjunction

 e1 && e2: evaluate e1; don‟t
evaluate e2 unless necessary

 instead of

if (s.equals("")) {

f = true;

} else {

f = false;

}

write
f = s.equals("");

 instead of

if (s.equals("")) {

f = a;

} else {

f = b;

}

write
f = s.equals("")? a : b;

Application of Recursion
3

 So far, we have discussed recursion on integers

 Factorial, fibonacci, combinations, an

 Let us now consider a new application that shows
off the full power of recursion: parsing

 Parsing has numerous applications: compilers, data
retrieval, data mining,…

Motivation
4

 The cat ate the rat.

 The cat ate the rat slowly.

 The small cat ate the big rat slowly.

 The small cat ate the big rat on the mat

slowly.

 The small cat that sat in the hat ate the

big rat on the mat slowly.

 The small cat that sat in the hat ate the

big rat on the mat slowly, then got sick.

 …

 Not all sequences of words are

legal sentences

 The ate cat rat the

 How many legal sentences are

there?

 How many legal programs are

there?

 Are all Java programs that

compile legal programs?

 How do we know what programs

are legal?

http://java.sun.com/docs/books/jls/third_edition/html/syntax.html

A Grammar

 Sentence Noun Verb Noun

 Noun boys

 Noun girls

 Noun bunnies

 Verb like

 Verb see

 Our sample grammar has these rules:

 A Sentence can be a Noun followed
by a Verb followed by a Noun

 A Noun can be „boys‟ or „girls‟ or
„bunnies‟

 A Verb can be „like‟ or „see‟

5

 Grammar: set of rules for generating

sentences in a language

 Examples of Sentence:

 boys see bunnies

 bunnies like girls

 …

 White space between words does

not matter

 The words boys, girls, bunnies, like,

see are called tokens or terminals

 The words Sentence, Noun, Verb are

called nonterminals

 This is a very boring grammar

because the set of Sentences is finite

(exactly 18 sentences)

A Recursive Grammar
6

 Sentence Sentence and Sentence

 Sentence Sentence or Sentence

 Sentence Noun Verb Noun

 Noun boys

 Noun girls

 Noun bunnies

 Verb like

 Verb see

 This grammar is more interesting than
the last one because the set of
Sentences is infinite

 Examples of Sentences in this

language:

 boys like girls

 boys like girls and girls like bunnies

 boys like girls and girls like bunnies

and girls like bunnies

 boys like girls and girls like bunnies

and girls like bunnies and girls like

bunnies

 ………

 What makes this set infinite?

Answer:

 Recursive definition of Sentence

2/14/2011

2

Detour
7

 What if we want to add a period at the end of every sentence?

 Sentence Sentence and Sentence .

 Sentence Sentence or Sentence .

 Sentence Noun Verb Noun .

 Noun …

 Does this work?

 No! This produces sentences like:

 girls like boys . and boys like bunnies . .

Sentence Sentence

Sentence

Sentences with Periods
8

 PunctuatedSentence Sentence .

 Sentence Sentence and Sentence

 Sentence Sentence or Sentence

 Sentence Noun Verb Noun

 Noun boys

 Noun girls

 Noun bunnies

 Verb like

 Verb see

 Add a new rule that adds a

period only at the end of

the sentence.

 The tokens here are the 7

words plus the period (.)

 This grammar is

ambiguous:

boys like girls

and girls like boys

or girls like bunnies

Grammar for Simple Expressions
9

 E integer

 E (E + E)

 Simple expressions:

 An E can be an integer.

 An E can be „(‟ followed by an E

followed by „+‟ followed by an E

followed by „)‟

 Set of expressions defined by this

grammar is a recursively-defined set

 Is language finite or infinite?

 Do recursive grammars always yield

infinite languages?

 Here are some legal expressions:

 2

 (3 + 34)

 ((4+23) + 89)

 ((89 + 23) + (23 + (34+12)))

 Here are some illegal

expressions:

 (3

 3 + 4

 The tokens in this grammar are

(, +,), and any integer

Parsing
10

 Grammars can be used
in two ways
 A grammar defines a language

(i.e., the set of properly structured
sentences)

 A grammar can be used to parse a
sentence (thus, checking if the
sentence is in the language)

 To parse a sentence is to
build a parse tree
 This is much like diagramming a

sentence

 Example: Show that

((4+23) + 89)

is a valid expression E by

building a parse tree

E

(E)E+

89

(E)E+

4 23

Recursive Descent Parsing
11

 Idea: Use the grammar to design a recursive program to check if a sentence is in the

language

 To parse an expression E, for instance

We look for each terminal (i.e., each token)

 Each nonterminal (e.g., E) can handle itself by using a recursive call

 The grammar tells how to write the program!

boolean parseE() {

if (first token is an integer) return true;

if (first token is ‘(‘) {

parseE();

Make sure there is a ‘+’ token;

parseE();

Make sure there is a ‘)’ token;

return true;

}

return false;

}

Java Code for Parsing E
12

 public static Node parseE(Scanner scanner) {

 if (scanner.hasNextInt()) {

 int data = scanner.nextInt();

 return new Node(data);

 }

 check(scanner, ’(’);

 left = parseE(scanner);

 check(scanner, ’+’);

 right = parseE(scanner);

 check(scanner, ’)’);

 return new Node(left, right);

 }

2/14/2011

3

Detour: Error Handling with Exceptions
13

 Parsing does two things:

 It returns useful data (a parse tree)

 It checks for validity (i.e., is the input a valid sentence?)

 How should we respond to invalid input?

 Exceptions allow us to do this without complicating

our code unnecessarily

Exceptions
14

 Exceptions are usually thrown to indicate that something
bad has happened

 IOException on failure to open or read a file

 ClassCastException if attempted to cast an object to a

type that is not a supertype of the dynamic type of the object

 NullPointerException if tried to dereference null

 ArrayIndexOutOfBoundsException if tried to access

an array element at index i < 0 or the length of the array

 In our case (parsing), we should throw an exception when
the input cannot be parsed

Handling Exceptions
15

 Exceptions can be caught by the program using a

try-catch block

 catch clauses are called exception handlers
Integer x = null;

try {

x = (Integer)y;

System.out.println(x.intValue());

} catch (ClassCastException e) {

System.out.println("y was not an Integer");

} catch (NullPointerException e) {

System.out.println("y was null");

}

Defining Your Own Exceptions
16

 An exception is an object (like everything else in

Java)

 You can define your own exceptions and throw them

class MyOwnException extends Exception {}

...

if (input == null) {

throw new MyOwnException();

}

Declaring Exceptions
17

 In general, any exception that could be thrown must be either declared in
the method header or caught



 Note: throws means “can throw”, not “does throw”

 Subtypes of RuntimeException do not have to be declared (e.g.,
NullPointerException, ClassCastException)

 These represent exceptions that can occur during “normal operation of the
Java Virtual Machine”

void foo(int input) throws MyOwnException {

if (input == null) {

throw new MyOwnException();

}

...

}

How Exceptions are Handled
18

 If the exception is thrown from inside the try clause of a
try-catch block with a handler for that exception (or a
superclass of the exception), then that handler is executed

 Otherwise, the method terminates abruptly and control is passed
back to the calling method

 If the calling method can handle the exception (i.e., if the
call occurred within a try-catch block with a handler for
that exception) then that handler is executed

 Otherwise, the calling method terminates abruptly, etc.

 If none of the calling methods handle the exception, the
entire program terminates with an error message

2/14/2011

4

Using a Parser to Generate Code
19

We can modify the parser
so that it generates stack
code to evaluate arithmetic
expressions:
 2 PUSH 2

 STOP

 (2 + 3) PUSH 2

 PUSH 3

 ADD

 STOP

Goal: Method parseE
should return a string
containing stack code for
expression it has parsed

Method parseE can generate

code in a recursive way:

 For integer i, it returns string “PUSH ”

+ i + “\n”

 For (E1 + E2),

 Recursive calls for E1 and E2 return code

strings c1 and c2, respectively

 For (E1 + E2), return

c1 + c2 + “ADD\n”

 Top-level method should tack on a

STOP command after code received

from parseE

Does Recursive Descent Always Work?
20

There are some grammars
that cannot be used as the
basis for recursive descent
A trivial example (causes infinite

recursion):

 S b

 S Sa

Can rewrite grammar
 S b

 S bA

 A a

 A aA

 For some constructs, recursive

descent is hard to use

 Can use a more powerful parsing

technique (there are several, but

not in this course)

Syntactic Ambiguity
21

Sometimes a sentence has more
than one parse tree

 S A | aaxB

 A x | aAb

 B b | bB

 The string aaxbb can be parsed in two ways

This kind of ambiguity sometimes
shows up in programming
languages

 if E1 then if E2 then S1 else S2

Which then does the else go
with?

 This ambiguity actually affects
the program‟s meaning

How do we resolve this?

 Provide an extra non-grammar rule
(e.g., the else goes with the
closest if)

 Modify the language (e.g., an if-
statement must end with a „fi‟)

 Operator precedence (e.g.
1 + 2 * 3 should always be parsed
as 1 + (2 * 3), not
(1 + 2) * 3

 Other methods (e.g., Python uses
amount of indentation)

Conclusion
22

 Recursion is a very powerful technique for writing
compact programs that do complex things

 Common mistakes:

 Incorrect or missing base cases

 Subproblems must be simpler than top-level problem

 Try to write description of recursive algorithm and
reason about base cases before writing code

 Why?
 Syntactic junk such as type declarations, etc. can create mental

fog that obscures the underlying recursive algorithm

 Best to separate the logic of the program from coding
details

Exercises
23

 Think about recursive calls made to parse and generate
code for simple expressions

 2

 (2 + 3)

 ((2 + 45) + (34 + -9))

 Derive an expression for the total number of calls made
to parseE for parsing an expression

 Hint: think inductively

 Derive an expression for the maximum number of
recursive calls that are active at any time during the
parsing of an expression (i.e. max depth of call stack)

Exercises
24

 Write a grammar and recursive program for palindromes
 mom

 dad

 i prefer pi

 race car

 murder for a jar of red rum

 sex at noon taxes

 Write a grammar and recursive program for strings AnBn

 AB

 AABB

 AAAAAAABBBBBBB

 Write a grammar and recursive program for Java
identifiers
 <letter> [<letter> or <digit>]0…N

 j27, but not 2j7

