
6/15/2011

1

CS/ENGRD 2110
Object-Oriented Programming 

and Data Structures
Spring 2011

Thorsten Joachims

Lecture 5: Recursion

Quiz 1 Solution
• What IDE does the CS 2110 Staff recommend using for this class?

– (a) Eclipse
– (b) Dr. Java
– (c) NetBeans
– (d) Emacs

• 2. Integer num1 = new Integer(2110); Integer num2 = new Integer(2110);
System.out.println((num1 == num2) + ", " + (num1.equals(num2)));
What is the output of the previous code?
– (a) "true, true"
– (b) "true, false"
– (c) "false, true"
– (d) "false, false"

• 3. Animal parrot = new Bird();
What is the static type of the field above?
– (a) Bird
– (b) Object
– (c) Parrot
– (d) Animal

• 4. Which is the correct google group for this class?
– (a) cornell-cs2110
– (b) cornell-cs3110-sp11
– (c) cornell-cs2110-sp11
– (d) cornell-cs2110-sp10 2

Recursion Overview

• Recursion is a powerful technique for specifying functions, sets, and 
programs

• Example recursively-defined functions and programs
– factorial 
– combinations
– exponentiation (raising to an integer power)
– solution of combinatorial problems (i.e. search)

• Example recursively-defined sets
– grammars 
– expressions
– data structures (lists, trees, ...)

3

The Factorial Function  (n!)
• Define: n! = n·(n 1)·(n 2)···3·2·1     

– read: “n factorial”
– E.g., 3! = 3·2·1 = 6

• The function int  int that gives n! on input n 
is called the factorial function

• n! is the number of permutations of n distinct 
objects
– There is just one permutation of one object.  1! = 1
– There are two permutations of two objects:  2! = 2

1 2    2 1

– There are six permutations of three objects:  3! = 6
1 2 3     1 3 2     2 1 3     2 3 1     3 1 2     3 2 1

4

5

Permutations of
Permutations of non-
orange blocks

Each permutation of the three non-orange 
blocks gives four permutations when the 
orange block is included

Total number = 4·6 = 24 = 4!
 General:
• 0! = 1 (by convention)
• If n > 0,  n! = n·(n-1)!

A Recursive Program

6

static int fact(int n) {

if (n = = 0) return 1;

else return n*fact(n-1);

}

Recursive definition of n!

• 0! = 1

• n! = n·(n 1)!,  n > 0

1

1

2

6

Execution of fact(4)

fact(1)

fact(4)

fact(3)

fact(0)

fact(2)

24



6/15/2011

2

General Approach to Writing
Recursive Functions

• Try to find a parameter, say n, such that the solution for 
n can be obtained by combining solutions to the same 
problem using smaller values of n (e.g., (n-1)!) 
(i.e. recursion)

• Find base case(s) – small values of n for which you can 
just write down the solution (e.g., 0! = 1)

• Verify that, for any valid value of n, applying the 
reduction of step 1 repeatedly will ultimately hit one of 
the base cases    

7

The Fibonacci Function
• Mathematical definition:

fib(0) = 0
fib(1) = 1
fib(n) = fib(n 1) + fib(n 2),  n ≥ 2

• Fibonacci sequence:  0, 1, 1, 2, 3, 5, 8, 13, …

8

static int fib(int n) {

if (n == 0) return 0;

else if (n == 1) return 1;

else return fib(n-1) + fib(n-2);

} 

two base cases!

Fibonacci (Leonardo Pisano) 
1170-1240?

Statue in Pisa, Italy, Giovanni 
Paganucci, 1863

Recursive Execution

9

static int fib(int n) {

if (n == 0) return 0;

else if (n == 1) return 1;

else return fib(n-1) + fib(n-2);

} 

fib(4)

fib(3) fib(2)

fib(1) fib(0)

fib(2) fib(1) fib(1) fib(0)

Execution of fib(4):

Combinations 
(a.k.a. Binomial Coefficients)

• How many ways can you choose r items from 
a set of n distinct elements?        “n choose r”

– = number of 2-element subsets of {A,B,C,D,E}

• 2-element subsets containing A: 
{A,B}, {A,C}, {A,D}, {A,E}

• 2-element subsets not containing A: 
{B,C},{B,D},{B,E},{C,D},{C,E},{D,E}

• Therefore,        =        +

10

(  )
4
1 (  )

4
2(  )

5
2

(  )n
r

(  )5
2

(  )4
1

(  )4
2

Combinations

11

= +         ,  n > r > 0

= 1

= 1

(  )
n
r (    )

n 1
r (    )

n 1
r 1

(  )
n
n

(  )
n
0

(  )
0
0

(  )
1
1(  )

1
0

(  )
2
2(  )

2
1(  )

2
0

(  )
3
3(  )

3
2(  )

3
1(  )

3
0

(  )
4
4(  )

4
3(  )

4
2(  )

4
1(  )

4
0

1

1      1

1      2      1

1      3      3      1

1      4      6      4      1

=

Pascal’s

triangle

Can also show that               =(  )n
r

n!

r!(n r)!

Binomial Coefficients

• Combinations are also called binomial coefficients 
because they appear as coefficients in the expansion 
of the binomial (x+y)n

12
12

(x + y)n =        xn +       xn 1y +       xn 2y2 + ··· +        yn(  )
n
n(  )

n
0 (  )

n
1 (  )

n
2



6/15/2011

3

Multiple Base Cases

• Coming up with right base cases can be tricky!

• General idea:

– Determine argument values for which recursive 
case does not apply

– Introduce a base case for each one of these
13

Two base cases

= +         ,  n > r > 0

= 1

= 1

(  )
n
r (    )

n 1
r (    )

n 1
r 1

(  )
n
n

(  )
n
0

Recursive Program for Combinations

14

static int combs(int n, int r) {   //assume n>=r>=0

if (r == 0 || r == n) return 1; //base cases

else return combs(n-1,r) + combs(n-1,r-1);

}

= +         ,  n > r > 0

= 1

= 1

(  )
n
r (    )

n 1
r (    )

n 1
r 1

(  )
n
n

(  )
n
0

Positive Integer Powers

• an = a·a·a···a (n times)

• Alternate description:

– a0 = 1

– an+1 = a·an

15

static int power(int a, int n) {

if (n == 0) return 1;

else return a*power(a,n-1);

}

A Smarter Version

• Power computation:
– a0 = 1
– If n is nonzero and even, an = (an/2)2

– If n is odd, an = a·(an/2)2

• Java note: If x and y are integers, “x/y” returns the integer part of the quotient

• Example: 
– a5 =  a·(a5/2)2 =  a·(a2)2 =  a·((a2/2)2)2 =  a·(a2)2

– Note: this requires 3 multiplications rather than 5!

• What if n were larger? 
– Savings would be more significant
– Straightforward computation:  n multiplications
– Smarter computation:  log(n)  multiplications

16

Smarter Version in Java

• n = 0:  a0 = 1
• n nonzero and even:  an = (an/2)2

• n nonzero and odd:  an = a·(an/2)2

17

static int power(int a, int n) {

if (n == 0) return 1;

int halfPower = power(a,n/2);

if (n%2 == 0) return halfPower*halfPower;

return halfPower*halfPower*a;

}

parameters
local variable

 The method has two parameters and a local variable

Why aren’t these overwritten on recursive calls?

Implementation of Recursive Methods

• Key idea: 
– Use a stack to remember parameters and local 

variables across recursive calls

– Each method invocation gets its own stack frame

• A stack frame contains storage for
– Local variables of method

– Parameters of method

– Return info (return address and return value)

– Perhaps other bookkeeping info

18



6/15/2011

4

Stacks

• Like a stack of plates

• You can push data on top or 
pop data off the top in a LIFO 
(last-in-first-out) fashion

• A queue is similar, except it is 
FIFO (first-in-first-out)

19

top element

2nd element

3rd element

...

bottom 

element

...

top-of-stack

pointer

stack grows

Stack Frame

• A new stack frame is 
pushed with each 
recursive call

• The stack frame is 
popped when the 
method returns
Leaving a return 

value (if there is 
one) on top of the 
stack

20

a stack frame

return info

local variables

parameters

Example: power(2, 5)

21

return info

(a = ) 2

(n = ) 5

(hP = ) ?

return info

(a = ) 2

(n = ) 5

(hP = ) ?

return info

(a = ) 2

(n = ) 2

(hP = ) ?

return info

(a = ) 2

(n = ) 5

(hP = ) ?

return info

(a = ) 2

(n = ) 2

(hP = ) ?

return info

(a = ) 2

(n = ) 1

(hP = ) ?

return info

(a = ) 2

(n = ) 5

(hP = ) 4

return info

(a = ) 2

(n = ) 5

(hP = ) ?

return info

(a = ) 2

(n = ) 2

(hP = ) 2

return info

(a = ) 2

(n = ) 5

(hP = ) ?

return info

(a = ) 2

(n = ) 2

(hP = ) ?

return info

(a = ) 2

(n = ) 1

(hP = ) 1

(retval = ) 1

(retval = ) 2

(retval = ) 4

(retval = ) 32

static int power(int a, int n) {

if (n == 0) return 1;

int hP = power(a,n/2);

if (n%2 == 0) return hP*hP;

return hP*hP*a;

}

return info

(a = ) 2

(n = ) 5

(hP = ) ?

return info

(a = ) 2

(n = ) 2

(hP = ) ?

return info

(a = ) 2

(n = ) 1

(hP = ) ?

return info

(a = ) 2

(n = ) 0

(hP = ) ?

How Do We Keep Track?
• At any point in execution, 

many invocations of power
may be in existence

– Many stack frames (all for 
power) may be in Stack

– Thus there may be several 
different versions of the 
variables a and n

22

 How does processor know which 
location is relevant at a given 
point in the computation?
 Frame Base Register

 When a method is invoked, a 
frame is created for that method 
invocation, and FBR is set to 
point to that frame

 When the invocation returns, 
FBR is restored to what it was 
before the invocation

 How does machine know what 
value to restore in the FBR?

 This is part of the return info in 
the stack frame

FBR

• Computational activity takes place 
only in the topmost (most recently 
pushed) stack frame

23

return info

(a = ) 2
(n = ) 5

(hP = ) ?

return info

(a = ) 2
(n = ) 5

(hP = ) ?

return info

(a = ) 2
(n = ) 2

(hP = ) ?

return info

(a = ) 2
(n = ) 5

(hP = ) ?

return info

(a = ) 2
(n = ) 2

(hP = ) ?

return info

(a = ) 2
(n = ) 1

(hP = ) ?

FBR FBR FBR

old FBR

old FBR

old FBR

old FBRold FBR old FBR

Problem Solving by Search

• Idea: Try all possible sequences of moves
• Pseudocode:

– DepthFirstSearch(state)
IF isSolution(state) THEN

RETURN(true)
WHILE hasNextLegalMove(state)

next= getNextLegalMove(state)
IF DepthFirstSearch(next) THEN

RETURN(true)
RETURN(false)

• Caution: You might get a program that does not terminate, 
if you have
– move sequences that can be infinitely long
– move sequences that get you back to the same state (cycles)

24

3 2 5
4 8

7 1 6

3 2 5
7 4 8

1 6

3 2 5
4 8
7 1 6

2 5
3 4 8
7 1 6



6/15/2011

5

Conclusion

• Recursion is a convenient and powerful way to 
define functions

• Problems that seem insurmountable can often be 
solved in a “divide-and-conquer” fashion:
– Reduce a big problem to smaller problems of the 

same kind, solve the smaller problems
– Recombine the solutions to smaller problems to form 

solution for big problem

• Important application: parsing

25


