6/15/2011

CS/ENGRD 2110
Object-Oriented Programming

and Data Structures
Spring 2011
Thorsten Joachims

Lecture 5: Recursion

Quiz 1 Solution

* What IDi does the CS 2110 Staff recommend using for this class?

— (b)Dr.Java
— () NetBeans
— (d) Emacs
* 2.Integer numl = new Integer(2110); Integer num2 = new Integer(2110);
System.out.printin((num1 == num2) +", " + (numl.equals(num2)));
What is the output of the previous code?
- (a)"true, true"
— (b)" g
= , false”
* 3. Animal parrot = new Bird();
What is the static type of the field above?
— (a)Bird
— (b) Object

- (ci Pariot

* 4. Which is the correct google group for this class?
— (a)cornell-cs2110

~(d) corneft "sp10

Recursion Overview

Recursion is a powerful technique for specifying functions, sets, and
programs

Example recursively-defined functions and programs
— factorial

— combinations

— exponentiation (raising to an integer power)

— solution of combinatorial problems (i.e. search)

Example recursively-defined sets
— grammars

— expressions

— data structures (lists, trees, ...)

The Factorial Function (n!)

¢ Define: n! = n:(n-1):(n-2)---3-2:1
— read: “n factorial”
—Eg,3!=321=6
* The function int = int that gives n! on input n
is called the factorial function
* nlis the number of permutations of n distinct
objects
— There is just one permutation of one object. 1!=1
— There are two permutations of two objects: 2! =2
12 21
— There are six permutations of three objects: 3!=6
123 132 213 231 312 321

Permutations of (] [i) i

Permutations of non-
orange blocks

mil I Al 4ad]
[Jmf J5 9P
Ll i Jul

Oe® o ee
- - EU Each permutation of the three non-orange

blocks gives four permutations when the

. Ij . orange block is included

- General:
Total number =4-6 =24 =41 * 0!=1(by convention)
¢ Ifn>0, n!=n:(n-1)!

A Recursive Program

Recursive definition of n!

Execution of fact(4)
0l=1

en'=n(n-1),, n>0 fact(4) 6 24
fact(3)
static int fact(int n) {
if (n == 0) return 1; fact(2)
else return n*fact(n-1); 1
} fact(1)
1
fact(0)

6/15/2011

General Approach to Writing
Recursive Functions

* Try to find a parameter, say n, such that the solution for
n can be obtained by combining solutions to the same
problem using smaller values of n (e.g., (n-1)!)

(i.e. recursion)

* Find base case(s) — small values of n for which you can
just write down the solution (e.g., 0! = 1)

 Verify that, for any valid value of n, applying the
reduction of step 1 repeatedly will ultimately hit one of
the base cases

The Fibonacci Function

« Mathematical definition: ;

fib(0) =0 two base cases!
fib(1)=1 >
fib(n) = fib(n — 1) + fib(n — 2), n>2

* Fibonaccisequence: 0,1,1,2,3,5,8,13, ...

static int fib(int n) { Fibonacci (Leonardo Pisano)
if (n == 0) return 0; 1170-12407
else if (n == 1) return 1; SmuepmPusa,u_aly,emvanm
aganucc, 1863
else return fib(n-1) + fib(n-2);

}

Recursive Execution

static int fib(int n) {

if (n == 0) return 0;

else if (n == 1) return 1;

else return fib(n-1) + fib(n-2);
}

Execution of fib(4): fib(4)

fib(3) fib(2)
A /\

fib2) fib(1) fib(1) fib(0)

N

fib(1) fib(0)

Combinations

(a.k.a. Binomial Coefficients)

* How many ways can you choose r items from
. . n
a set of n distinct elements? (+) “n choose r”

—(3): number of 2-element subsets of {A,B,C,D,E}
« 2-element subsets containing A: (‘11)
{A,B},{A,C}, {A,D}, {AE}
* 2-element subsets not containing A: (g)
{B,C},{B,D},{B,E},{C,D},{C,E},{D,E}

« Therefore, (3)= (1) +(2)

Combinations
(M= ("9 (F2), n>rs0
(2) =1 n n!
(8) =1 Can also show that (r) = W
(8) Pascal’s 1
(é) (1) triangle 1 1

) (1)) = 1 2 1
G) @) G) 6 13 3 1
@ @) G G (@ 1 4 6 4 1

Binomial Coefficients

* Combinations are also called binomial coefficients
because they appear as coefficients in the expansion
of the binomial (x+y)"

ey = (o) + (1)ety + (2)x2y2 + o+ (n)yn

6/15/2011

Multiple Base Cases

= ("M+(M1) , nsrso0

("
(=1.__
(0)

—Two base cases

* Coming up with right base cases can be tricky!
¢ General idea:

— Determine argument values for which recursive
case does not apply

— Introduce a base case for each one of these

Recursive Program for Combinations

n;1)+ (?:11) , Nn>r>0

static int combs (int n, int r) { //assume n>=r>=0
if (r == 0 || r == n) return 1; //base cases
else return combs(n-1,r) + combs(n-1,r-1);

Positive Integer Powers

* a"=a-a-a-a(ntimes)

* Alternate description:
—-a’=1
—- an+1 =a-a"
static int power (int a, int n) {
if (n == 0) return 1;
else return a*power(a,n-1);

A Smarter Version

* Power computation:
—a0=1
— Ifnis nonzero and even, an = (a"2)?
— Ifnis odd, an = a-(a"2)2
« Java note: If xand y are integers, “x/y” returns the integer part of the quotient

¢ Example:
— a5 = a(a%)? = a(a?)? = a((a?2)?)? = a-(a?)?
— Note: this requires 3 multiplications rather than 5!

¢ Whatif n were larger?
— Savings would be more significant
— Straightforward computation: n multiplications
— Smarter computation: log(n) multiplications

Smarter Version in Java

* n=0:a%=1
* nnonzero and even: a" = (a"2)?
* nnonzero and odd: a" = a-(a"2)?

local variable parameters
tatic int power(int a, int n) {
if (n == 0) return 1;
int halfPower = power(a,n/2);
if (n%2 == 0) return halfPower*halfPower;

return halfPower*halfPower*a;

« The method has two parameters and a local variable
* Why aren’t these overwritten on recursive calls?

Implementation of Recursive Methods

* Key idea:
— Use a stack to remember parameters and local
variables across recursive calls
— Each method invocation gets its own stack frame

* A stack frame contains storage for
— Local variables of method
— Parameters of method
— Returninfo (return address and return value)
— Perhaps other bookkeeping info

6/15/2011

Stacks

stack grows
top-of-stack
top element :
pointer
2nd element
3rd element
« Like a stack of plates
* You can push data on top or
pop data off the top in a LIFO
bottom (last-in-first-out) fashion
element * Aqueue is similar, except it is

FIFO (first-in-first-out)

e Anew stack frame is
pushed with each
recursive call

* The stack frameis
popped when the
method returns

- Leaving a return
value (if there is
one) on top of the
stack

Stack Frame

local variables

a stack frame
parameters

return info

static int power(int a, int n) {
if (n == 0) return 1;
int hi ower (a,n/2) ;

if (n%2 == 0) return hP*hP;
return hP*hP*a;

Example: power(2, 5)

) (hp=)?
(=)o
(a=)2
rewrninfol [
(hP=)? (hP=)? (hP=)1
(h=)1 (h=)1 (h=)1
@=)2 @=)2 @=)2
fretuninfol freturninfo) freturninfol oo
(hP=)? (hp=)? (hp=)? (hp=)? (hp=)2
(n=)2 (n=)2 (n=)2 (n=)2 (n=)2
(a=)2 (a=)2 (a=)2 (a=)2 (a=)2
returninfol ~ |returninfo| ~|returninfo] ~|returninfo| ~|return infol
(retval =) 4
(hp=)? | [(hP=)? (hp=)? (hp=)? (hP=)? (hP=)? (hp=)a
(n=)s (n=)s (n=)s (n=)s (n=)s (n=)5 (n=)5
(a=)2 (a=)2 (a=)2 (a=)2 (a=)2 (a=)2 (a=)2
returninfo| |returninfo] |returninfo, returninfo| |returninfo| |returninfo| |returninfo

(retval =) 32

W\ A \INT NS A\ 7 QAo

How Do We Keep Track?

* How does processor know which
location is relevant at a given
pointin the computation?
> Frame Base Register

= When a method is invoked, a
frame is created for that method
invocation, and FBR is set to
point to that frame

= When the invocation returns,
FBRis restored to what it was
before the invocation

At any point in execution,
many invocations of power
may be in existence
— Many stack frames (all for
power) may be in Stack
— Thus there may be several
different versions of the
variables a and n

* How does machine know what
value to restore in the FBR?

= This is part of the return info in
the stack frame

Computational activity takes place
only in the topmost (most recently
pushed) stack frame

return info

FBR FBR

Problem Solving by Search

Idea: Try all possible sequences of moves

Pseudocode:
— DepthFirstSearch(state)
IF isSolution(state) THEN
RETURN(true)
WHILE hasNextLegalMove(state)
next= getNextLegalMove(state)
IF DepthFirstSearch(next) THEN
RETURN(true)
RETURN(false)

Caution: You might get a program that does not terminate,
if you have

— move sequences that can be infinitely long

— move sequences that get you back to the same state (cycles)

6/15/2011

Conclusion

* Recursion is a convenient and powerful way to
define functions

* Problems that seem insurmountable can often be
solved in a “divide-and-conquer” fashion:

— Reduce a big problem to smaller problems of the
same kind, solve the smaller problems

— Recombine the solutions to smaller problems to form
solution for big problem

* Important application: parsing

