
6/15/2011

1

CS/ENGRD 2110
Object-Oriented Programming

and Data Structures
Spring 2011

Thorsten Joachims

Lecture 2: Java Review

Outline

• A brief (biased) history of programming languages

• Review of some Java/OOP concepts

• Java tips, trick, and pitfalls

• Debugging and experimentation

2

Machine Language
• Used with the earliest electronic

computers (1940s)
–Machines use vacuum tubes

instead of transistors

• Programs are entered by setting
switches or reading punch cards

• All instructions are numbers

3

• Example code

0110 0001 0000 0110

add reg1 6

• An idea for improvement
 Use words instead of numbers

Result: Assembly Language

Assembly Language

• Idea: Use a program (an
assembler) to convert assembly
language into machine code

• Early assemblers were some of
the most complicated code of
the time (1950s)

4

 Example code

ADD R1 6

MOV R1 COST

SET R1 0

JMP TOP

 Idea for improvement

 Let’s make it easier for humans
by designing a high-level
computer language

 Result: high-level languages

High-Level Language
• Idea: Use a program (a compiler

or an interpreter) to convert
high-level code into machine
code

• Pro

– Easier for humans to write,
read, and maintain code

• Con

– The resulting program will never
be as efficient as good
assembly-code

• Waste of memory

• Waste of time

5

 The whole concept was initially
controversial

 FORTRAN (mathematical FORmula
TRANslating system) was designed
with efficiency very much in mind

FORTRAN
• Initial version developed in 1957

by IBM

6

 Example code

C SUM OF SQUARES

ISUM = 0

DO 100 I=1,10

ISUM = ISUM + I*I

100 CONTINUE

 FORTRAN introduced many

high-level language constructs

still in use today

 Variables & assignment

 Loops

 Conditionals

 Subroutines

 Comments

6/15/2011

2

ALGOL

• ALGOL
= ALGOrithmic Language

• Developed by an international
committee

• First version in 1958 (not widely
used)

• Second version in 1960 (widely
used)

7

 Sample code

comment Sum of squares

begin

integer i, sum;

for i:=1 until 10 do

sum := sum + i*i;

end

 ALGOL 60 included recursion

 Pro: easier to design clear,

succinct algorithms

 Con: too hard to implement;

too inefficient

COBOL
• COBOL = COmmon Business

Oriented Language

• Developed by the US
government (about 1960)

– Design was greatly influenced
by Grace Hopper

• Goal: Programs should look like
English

– Idea was that anyone should be
able to read and understand a
COBOL program

8

 COBOL included the idea of
records (a single data structure
with multiple fields, each field
holding a value)

Simula & Smalltalk

• These languages introduced and
popularized Object Oriented
Programming (OOP)

– Simula was developed in
Norway as a language for
simulation in the 60s

– Smalltalk was developed at
Xerox PARC in the 70s

• These languages included

– Classes

– Objects

– Subclasses & Inheritance

9

Java – 1995

•Java includes
–Assignment statements,

loops, conditionals from
FORTRAN (but syntax
from C)

–Recursion from ALGOL

–Fields from COBOL

–OOP from Simula &
Smalltalk

10

JavaTM and logo © Sun Microsystems, Inc.

We assume you already know Java…

• Classes and objects

• Static vs instance fields and methods

• Primitive vs reference types

• Private vs public vs package

• Constructors

• Method signatures

• Local variables

• Arrays

• Subtypes and Inheritance, Shadowing

11

Java is object oriented

• In most prior languages, code was executed
line by line and accessed variables or record

• In Java, we think of the data as being
organized into objects that come with their
own methods, which are used to access them

– This shift in perspective is critical

– When coding in Java one is always thinking about
“which object is running this code?”

6/15/2011

3

Dynamic vs. Static

• Some kinds of information is “static”
– There can only be one instance

– Like a “global variable” in C or C++ (or assembler)

– In languages like FORTRAN, COBOL most data is static.

• Object-oriented information is “dynamic”
– Each object has its own private copy

– When we create a new object, we make new copies of the
variables it uses to keep its state

– Languages like C and C++ allow us to allocate memory at
runtime, but don’t offer a lot of help for managing it

• In Java this distinction becomes very important

Constructors
• Called to create new instances of a class
• Default constructor initializes all fields to default

values (0 or null)

14

class Thing {

int val;

Thing(int val) {

this.val = val;

}

Thing() {

this(3);

}

}

Thing one = new Thing(1);

Thing two = new Thing(2);

Thing three = new Thing();

Static Initializers
• Run once when class is loaded
• Used to initialize static objects

15

class StaticInit {

static Set<String> courses = new HashSet<String>();

static {

courses.add("CS 2110");

courses.add("CS 2111");

}

public static void main(String[] args) {

...

}

}

Static methods and variables

• If a method or a variable is declared “static”
there will be just one instance for the class

– Otherwise, we think of each object as having its
own “version” of the method or variable

• Anyone can call a static method or access a
static variable

• But to access a dynamic method or variable
Java needs to know which object you mean

Static vs Instance Example

17

class Widget {

static int nextSerialNumber = 10000;

int serialNumber;

Widget() {

serialNumber = nextSerialNumber++;

}

public static void main(String[] args) {

Widget a = new Widget();

Widget b = new Widget();

Widget c = new Widget();

System.out.println(a.serialNumber);

System.out.println(b.serialNumber);

System.out.println(c.serialNumber);

}

}

Names
• Refer to my static and instance fields & methods by (unqualified)

name:
– serialNumber

– nextSerialNumber

• Refer to static fields & methods in another class using name of the
class
– Widget.nextSerialNumber

• Refer to instance fields & methods of another object using name of
the object
– a.serialNumber

• Example
– System.out.println(a.serialNumber)

• out is a static field in class System

• The value of System.out is an instance of a class that has an
instance method println(int)

• If an object must refer to itself, use this

18

6/15/2011

4

A Common Pitfall
local variable shadows field

19

class Thing {

int val;

boolean setVal(int v) {

int val = v;

}

}

 you would like to set the instance field val = v

 but you have declared a new local variable val

 assignment has no effect on the field val

The mainMethod

public static void main(String[] args)

{

...

}

20

Method must be named main

Parameters passed to program, either from command line or

from “Run”/”Debug” dialog box in Eclipse

A class method; don’t need an object to call it

Can be called from anywhere

No return value

Avoiding trouble
• Keep in mind that “main” is a static method

– Hence anything main calls needs to have an associated
object instance, or itself be static

• Use of static methods is discouraged

class Thing {

int counter;

static int sequence;

public static void main(String[] args) {

int c = ++counter; // Illegal: counter is assoc

// with an object of type

// Thing. But which object?

int s = ++sequence;// Legal: sequence is

// static too

}

}

Overloading of Methods
• A class can have several methods of the same name

– But all methods must have different signatures

– The signature of a method is its name plus types of its
parameters

• Example: String.valueOf(...) in Java API
– There are 9 of them:

• valueOf(boolean);

• valueOf(int);

• valueOf(long);

• ...

• Parameter types are part of the method’s signature

22
22

Primitive vs Reference Types
• Primitive types

•int, short, long, float,
byte, char, boolean, double
•efficient
•1 or 2 words
•not an Object — unboxed

• Reference types
•objects and arrays
•String, int[], HashSet
•usually require more memory
•can have special value null
•can compare null with ==, !=
•generate
NullPointerException
if you try to dereference null

23

x true

x

truenonzero

val

next

23

null

“==“ is not “equals()”
• == tests whether variables

hold identical values
– shallow equality

– works fine for primitive types

• equals() test whether two
objects (e.g., String)
contain equivalent data
– deep equality

– need to use for reference types

24

Two different strings with value
"hello"

x = "hello";

y = "hello";

x == y

x y

"hello" "hello"

 To compare object contents, override Object.equals()

 But if you do this, must also override Object.hashCode()
(more on this later)

6/15/2011

5

25

“==“ vs “equals()” for String

What you wrote. Value? What you should write.

“xy" == new String("xy“)

"xy" == "xy"

"xy" == "x" + "y"

True "xy".equals("xy")

False

True "xy".equals("x" + "y")

Arrays

26

a
0 1 2 3

String[] a = new String[4];

a.length == 4;

a[2] = “hello”;

null

 Arrays are reference types

 Array elements can be reference types
or primitive types

 E.g., int[] or String[]

 If a is an array, a.length is its
length

 Its elements are
a[0], a[1], ..., a[a.length-1]

 The length is fixed!
"hello"

null nullnull

Accessing Array Elements
Sequentially

27

public class CommandLineArgs {

public static void main(String[] args) {

System.out.println(args.length);

// old-style

for (int i = 0; i < args.length; i++) {

System.out.println(args[i]);

}

// new style

for (String s : args) {

System.out.println(s);

}

}

}

Class Hierarchy

28

Object

Puzzle
Array

EPuzzle

subclass of Puzzle

and Object

superclass of EPuzzle

and Puzzle

superclass of EPuzzle

subclass of Object

Every class (except Object) has a unique

immediate superclass, called its parent

…….

Overriding

• A method in a subclass overrides a method in
superclass if:

• both methods have the same name,
• both methods have the same signature (number and

type of parameters and return type), and
• both are static methods or both are instance methods

• Methods are dispatched according to the runtime
type of the object (dynamic binding / late binding)

29

Unexpected Consequence

An overriding method cannot have more
restricted access than the method it overrides

30

class A {

public int m() {...}

}

class B extends A {

private int m() {...}

}

A supR = new B(); //upcasting

supR.m(); //would invoke private method in

// class B at runtime!

//illegal!

6/15/2011

6

Accessing Overridden Methods

• Suppose a class S overrides a method m in its
parent

• Methods in S can invoke the overridden
method in the parent as

super.m()

• In particular, can invoke the overridden
method in the overriding method!

• Caveat: cannot compose super more than
once as in super.super.m()

31

Shadowing

• Like overriding, but for fields instead of methods
– Superclass: variable v of some type
– Subclass: variable v perhaps of some other type
– Method in subclass can access shadowed variable using

super.v

• Variable references are resolved using static binding
(i.e., at compile-time), not dynamic binding (i.e., not at
runtime)
– Variable reference r.v uses the static type (declared type)

of the variable r, not the runtime type of the object
referred to by r

• Shadowing variables is bad medicine and should be
avoided

32

Overloading Revisited

33
33

class Base { … }

class Derived extends Base { … }

class Test{

public void m (Derived b){

System.out.println("Test.m(Derived)");

}

public void m (Base a){

System.out.println("Test.m(Base)");

}

public static void main(String []args){

Test t = new Test();

Base b = new Base();

Base d = new Derived();

t.m(b);

t.m(d);

}

}

Output:
Test.m(Base)

Test.m(Base)

Array vs ArrayList vs HashMap

Three extremely useful constructs (see Java API)
– Array

• Storage is allocated when array created; cannot change

– ArrayList (in java.util)
• An “extensible” array

• Can append or insert elements, access i-th element, reset to
0 length

– HashMap (in java.util)
• Save data indexed by keys

• Can lookup data by its key

• Can get an iterator of the keys or the values

34

HashMap Example

• Create a HashMap of numbers, using the names of the
numbers as keys:

Map<String, Integer> num =
new HashMap<String, Integer>();

num.put("one", new Integer(1));

num.put("two", new Integer(2));

num.put("three", new Integer(3));

• To retrieve a number:
Integer n = num.get("two");

• returns null if the HashMap does not contain the key
– Can use num.containsKey(key) to check this

35

Generics and Autoboxing
• Old (pre-Java 5)

Map num = new HashMap();
num.put("one", new Integer(1));

Integer s = (Integer)num.get("one");

• New (generics)
Map<String, Integer> num =

new HashMap<String, Integer>();
num.put("one", new Integer(1));
Integer s = num.get("one");

• New (generics + autoboxing)
Map<String, Integer> num =

new HashMap<String, Integer>();

num.put("one", 1);

int s = num.get("one");

36

6/15/2011

7

Experimentation and Debugging

• Don't be afraid to experiment if you are not sure how
things work
– Documentation isn’t always clear
– Interactive Development Environments (IDEs), e.g. Eclipse, make

this easier

• Debugging
– Do not just make random changes, hoping something will work
– Think about what could cause the observed behavior
– Isolate the bug

• An IDE makes this easier by providing a Debugging Mode
• Can set breakpoints, step through the program while

watching chosen variables

37

