
CS211 Fall 2003
Prelim 2 Solutions and Grading Guide

Problem 1:

(a) obj2 = obj1;

 ILLEGAL because type of reference must always be a supertype of type of object

(b) obj3 = obj1;

 ILLEGAL because type of reference must always be a supertype of type of object

(c) obj3 = obj2;

 ILLEGAL because type of reference must always be a supertype of type of object

(d) I1 b = obj3;

 LEGAL because C3 is a subclass of C1 which implements I1

(e) I2 c = obj1;

 ILLEGAL because type of reference must always be a supertype of type of object

Grading (total 5 points):

For each part

-1 : wrong conclusion or reason

Problem 2(a):

abstract class Exp {
 abstract int eval();
}

class BinExp extends Exp {
 protected char op;
 protected Exp left;
 protected Exp right;

 public BinExp(char op, Exp l, Exp r) {
 this.op = op;
 this.left = l;
 this.right = r;
 }

 public int eval() {
 switch(op) {
 case '+': return left.eval() + right.eval();
 case '*': return left.eval() * right.eval();
 default: System.out.println("ERROR: Unknown op");
 return -1;
 }
 }

 public char get() { return op; }

 public Exp getLeft() { return left; }

 public Exp getRight() { return right; }
}

class NumExp extends Exp {
 protected int n;

 public NumExp(int n) { this.n = n; }

 public int get() { return n; }

 public int eval() { return n; }
}

Grading (total 10 points):

The solution for this part would vary widely. But at a minimum, a correct solution must have all
the class definitions with variable declarations, constructors and getter methods. Setter methods
are not required.

-7 : no separate class for numbers and binary operators
-4 : incorrect derivation of classes (e.g. NumExp should not be a subclass of BinExp)
-3 : BinExp class stores integers
-3 : NumExp class stores operators
-3 : no constructor for BinExp for directly setting left, right children
-3 : not enough getter methods

Problem 2(b):

public static int eval(Exp root) {
 if (root==null) {
 System.out.println("ERROR: Tree not initialized");
 return -1;
 }
 return root.eval();
}

Grading (total 10 points):

This part would greatly depend on the solution for part (a). At a minimum, it should implement a
recursive method that evaluates the tree passed.

-2 : no error checking for root == null
-3 : does not work if root is just a NumExp node
-5 : illegal downcast if eval() implemented externally and Exp objects not checked for type
 before downcasting
-3 : returns wrong result
-2 : has any sort of parsing code (this problem does not require parsing expressions)

Problem 3(a):

!,2,,log, 2 nnnnn n (in increasing order of asymptotic complexity)

Grading (total 7 points):

-2 : not smallest n
-2 : not largest !n
-2 : smaller than 2n n
-2 : smaller than nn log n

-2 : smaller than or n2 ,log, nnn 2n
-2 : wrote in reverse order

Problem 3(b):

TRUE: ()nn O 32 = one valid witness pair: ()0,1

FALSE: ()nn O 23 =
Proof: Assume ()nn O 23 = . Therefore there exists a witness pair ()0,nc such that

nn c 2.3 ≤ for all . In other words: 0nn ≥

cn

n

≤
2
3 | 0nn ≥

But the limit (as) is +∞→n +∞=n

n

2
3 . Therefore, it is not possible to have a constant upper

bound on n

n

2
3 . This implies our initial assumption of the existence of a witness pair was false.

Therefore, the statement ()nn O 23 = is also false.

Grading (total 8 points):

-4 : first statement concluded FALSE
-2 : first statement concluded TRUE but invalid witness pair
-4 : second statement concluded TRUE
-2 : second statement concluded FALSE but no relevant argument (informal good enough)

Problem 3(c):

No. Here is a counter example:

Let and . We can easily show that () nnf 2= () nng = () ()()ngOnf = using the witness pair

. Now, (0,2)

 and, () nnnf 422 2 == () nng 22 =

By the same process that we used to show that ()nn O 23 = is false, we can prove that ()nn O 24 =
is also false. Therefore, if () ()(ngOnf =) it does not imply that () ()()ngnf O 22 = .

Grading (total 5 points):

-5 : wrong conclusion (answered yes instead of no)
-3 : if counter example (or other proof) not valid

Problem 4:

[Breadth-first]

a) ABDCE
b) Not unique. Another possibility: ADBCE

[Depth-first]

c) ABCED
d) Not unique. Another possibility: ADECB

e) Yes. Graph with one node (A) or, (A) (B), or a graph that looks like a "linked list" in
general, among many other possibilities.

Grading (total 10 points):

2 points for each part:

a) -2 if wrong sequence

b) -2 if answered “unique”

-1 if answered “not unique” but gave wrong sequence

c) -2 if wrong sequence

d) -2 if answered “unique”

-1 if answered “not unique” but gave wrong sequence

e) -2 if answered “no”
-1 if answered “yes” but gave wrong example

Problem 5:

public static boolean Valid(String s) {
 if (s==null)
 return false;

 return Valid(s,0,s.length()-1);
}

public static boolean Valid(String s, int low, int high) {
 if (low > high)
 return true;
 if (low == high)
 return false;
 else
 return(s.charAt(low) == '(') &&
 (s.charAt(high) == ')') &&
 (Valid(s,low+1,high-1));
}

Grading (total 15 points):

-2 : function does not return Boolean
-2 : fails if s is null
-5 : does not work for empty string “”
-3 : extremely inefficient (e.g. scans string from beginning in each iteration)
-7 : does not work for strings of odd length (i.e. either crashes or returns true)
-2 : incorrect use of s.charAt(i)
-10 : no recursion
-3 : bad algorithm
-7 : allows invalid string
-1 : returns true if input is null

Problem 6:

class Hashley implements SearchStructure {
 protected ListCell[] spine;
 protected int size;
 private final int buckets = 10;

 public Hashley() {
 spine = new ListCell[buckets];
 for (int i=buckets; i<buckets; i++)
 spine[i] = null;
 }

 public void insert(Object o) {
 int index = ((Integer) o).intValue() % buckets;

 ListCell l = new ListCell(o,spine[index]);
 spine[index] = l;
 ++size;
 return;
 }

 public void delete(Object o) {
 int index = ((Integer) o).intValue() % buckets;
 ListCell curr = spine[index];
 ListCell prev = null;

 while (curr != null &&

((Comparable) curr.getDatum()).compareTo(o) != 0) {
 prev = curr;
 curr = curr.getNext();
 }

 if (curr == null)

return;

 if (prev == null)
 spine[index] = curr.getNext();
 else
 prev.setNext(curr.getNext());

 --size;
 return;
 }

 public boolean search(Object o) {
 int index = ((Integer) o).intValue() % buckets;
 ListCell curr = spine[index];

 while (curr != null) {
 if (((Comparable) curr.getDatum()).compareTo(o) == 0)
 return true;
 curr = curr.getNext();
 }
 return false;
 }

 public int size() { return size; }
}

Grading (total 30 points):

-3 : class header does not have “implements SearchStructure”
-5 : spine is not declared as an array
-5 : spine array not allocated (no new) before first use
-3 : object not type-casted to Integer before calling intValue()
-2 : insert() does not increment size
-5 : deletion of first node in a list fails
-5 : deletion of intermediate nodes fail
-2 : delete() does not decrement size
-3 : objects not compared correctly
-5 : inefficient search if all lists are traversed to look for an object
-3 : tries to call methods on a null pointer (no checking in while loops etc.)
-3 : does not keep a size variable
-2 : each index in spine initialized to point to empty ListCell’s
-5 : function headers don’t match interface

