CS211 Fall 2003
Prelim 2 Solutions and Grading Guide

Problem 1:
(a) obj2 = obj1;

ILLEGAL because type of reference must always be a supertype of type of object
(b) obj3 = obj1;

ILLEGAL because type of reference must always be a supertype of type of object
(c) obj3 = obj2;

ILLEGAL because type of reference must always be a supertype of type of object
(d) 11 b = 0bj3;

LEGAL because C3 is a subclass of C1 which implements 11
(e) 12 c = obj1;

ILLEGAL because type of reference must always be a supertype of type of object

Grading (total 5 points):
For each part

-1 : wrong conclusion or reason



Problem 2(a):

abstract class Exp {
abstract int eval();
b

class BinExp extends Exp {
protected char op;
protected Exp left;
protected Exp right;

public BinExp(char op, Exp I, Exp r) {
this.op = op;
this.left = I;
this.right = r;

}

public int eval() {
switch(op) {
case "+": return left.eval() + right.eval();
case "*": return left_.eval() * right.eval();
default: System.out.printIn("’'ERROR: Unknown op');
return -1;

}

public char get() { return op; }

public Exp getLeft() { return left; }

public Exp getRight() { return right; }
class NumExp extends Exp {

protected int n;

public NumExp(int n) { this.n = n; }

public int get() { return n; }

public int eval() { return n; }

Grading (total 10 points):

The solution for this part would vary widely. But at a minimum, a correct solution must have all
the class definitions with variable declarations, constructors and getter methods. Setter methods
are not required.

-7 : no separate class for numbers and binary operators

-4 . incorrect derivation of classes (e.g. NumExp should not be a subclass of BinExp)
-3 : BinExp class stores integers

-3 : NumEXxp class stores operators

-3 : no constructor for BinExp for directly setting left, right children

-3 : not enough getter methods



Problem 2(b):

public static int eval(Exp root) {
it (root==null) {
System.out.printIn("’ERROR: Tree not initialized™);
return -1;

}

return root.eval();

Grading (total 10 points):

This part would greatly depend on the solution for part (a). At a minimum, it should implement a
recursive method that evaluates the tree passed.

-2 > no error checking for root == null

-3 : does not work if root is just a NumExp node

-5 1 illegal downcast if eval () implemented externally and Exp objects not checked for type
before downcasting

-3 : returns wrong result

-2 : has any sort of parsing code (this problem does not require parsing expressions)



Problem 3(a):
n, nlogn, n% 2", n! (inincreasing order of asymptotic complexity)

Grading (total 7 points):

-2 . n not smallest
-2 . n! not largest

-2 - n’smaller than n
-2 : nlogn smaller than n

-2 : 2" smaller than n, nlogn, or n?
-2 : wrote in reverse order

Problem 3(b):
TRUE: 2" =0(3") one valid witness pair: (1,0)

FALSE: 3" =0(2")
Proof: Assume 3" = 0(2n ) Therefore there exists a witness pair (c,n, ) such that
3" <c.2" forall n>n,. In other words:

n

3
2—n£c | n>n,

n

. .3 I .
But the limit (as n — +w0) is o +00 . Therefore, it is not possible to have a constant upper

n

bound on 2_” This implies our initial assumption of the existence of a witness pair was false.

Therefore, the statement 3" = 0(2“) is also false.

Grading (total 8 points):

-4 : first statement concluded FALSE

-2 : first statement concluded TRUE but invalid witness pair

-4 : second statement concluded TRUE

-2 : second statement concluded FALSE but no relevant argument (informal good enough)



Problem 3(c):
No. Here is a counter example:

Let f(n)=2n and g(n)=n. We can easily show that f(n)=0(g(n)) using the witness pair
(2,0). Now,

21 — 220 _ 4" ang, 290 = 2"

By the same process that we used to show that 3" = 0(2") is false, we can prove that 4" = 0(2”)
is also false. Therefore, if f(n)=0(g(n)) it does not imply that 2™ = 0(29(")),

Grading (total 5 points):

-5 : wrong conclusion (answered yes instead of no)
-3 . if counter example (or other proof) not valid



Problem 4:

[Breadth-first]

a) ABDCE

b) Not unique. Another possibility: ADBCE
[Depth-first]

c) ABCED

d) Not unique. Another possibility: ADECB

e) Yes. Graph with one node (A) or, (A)—>(B), or a graph that looks like a "linked list" in
general, among many other possibilities.
Grading (total 10 points):
2 points for each part:
a) -2 if wrong sequence

b) -2 if answered “unique”
-1 if answered “not unique” but gave wrong sequence

c) -2 if wrong sequence

d) -2 if answered “unique”
-1 if answered “not unique” but gave wrong sequence

e) -2 ifanswered “no”
-1 if answered *“yes” but gave wrong example



Problem 5:

public static boolean Valid(String s) {
ifT (s==null)
return false;

return Valid(s,0,s.length()-1);
}

public static boolean Valid(String s, int low, int high) {
if (low > high)
return true;
it (low == high)
return false;
else
return(s.charAt(low) == "(") &&
(s.charAt(high) == ")") &&
(vValid(s, low+1,high-1));

Grading (total 15 points):

-2 : function does not return Boolean

-2 : fails if sis null

-5 : does not work for empty string

-3 : extremely inefficient (e.g. scans string from beginning in each iteration)
-7 : does not work for strings of odd length (i.e. either crashes or returns true)
-2 . incorrect use of s.charAt(i)

-10 : no recursion

-3 : bad algorithm

-7 : allows invalid string

-1 : returns true if input is null



Problem 6:

class Hashley implements SearchStructure {
protected ListCell[] spine;
protected int size;
private final int buckets = 10;

public Hashley(Q {
spine = new ListCell[buckets];
for (int i=buckets; i<buckets; i++)
spine[i] = null;

}

public void insert(Object o) {
int index = ((Integer) o).intvValue() % buckets;

ListCell 1 = new ListCell(o,spine[index]);
spine[index] = 1;

++size;

return;

}

public void delete(Object 0) {
int index = ((Integer) o).intValue() % buckets;
ListCell curr = spine[index];
ListCell prev = null;

while (curr = null &&
((Comparable) curr.getbDatum()).compareTo(o) = 0) {
prev = curr;
curr = curr.getNext();

}

if (curr == null)
return;

it (prev == null)

spine[index] = curr.getNext();
else

prev.setNext(curr.getNext());

--size;
return;

}

public boolean search(Object 0) {
int index = ((Integer) o).intvValue() % buckets;
ListCell curr = spine[index];

while (curr = null) {
ifT (((Comparable) curr.getDatum()).compareTo(o) == 0)
return true;
curr = curr.getNext(Q);

}

return false;

}

public int size() { return size; }



Grading (total 30 points):

: class header does not have “implements SearchStructure”

: spine is not declared as an array

: spine array not allocated (no new) before first use

: object not type-casted to Integer before calling intvalue()
. insert() does not increment size

: deletion of first node in a list fails

: deletion of intermediate nodes fail

: delete() does not decrement size

: objects not compared correctly

- inefficient search if all lists are traversed to look for an object
: tries to call methods on a null pointer (no checking in while loops etc.)
: does not keep a size variable

: each index in spine initialized to point to empty ListCell’s

- function headers don’t match interface



