More Graphs

Lecture 21
CS2110 – Fall 2011
Undirected Trees

• An undirected graph is a tree if there is exactly one simple path between any pair of nodes
Undirected Trees

- Equivalently: an undirected graph is a *tree* if it is connected (there is a path between any pair of nodes) and acyclic
Facts About Trees

1. $|E| = |V| - 1$
2. connected
3. no cycles

Any two of these properties imply the third, and imply that the graph is a tree.
Spanning Trees

A spanning tree of a connected undirected graph \((V,E)\) is a subgraph \((V,E')\) that is a tree.
A spanning tree of a connected undirected graph \((V, E)\) is a subgraph \((V, E')\) that is a tree

- Same set of vertices \(V\)
- \(E' \subseteq E\)
- \((V, E')\) is a tree
Finding a Spanning Tree

A subtractive method

• Start with the whole graph – it is connected

• If there is a cycle, pick an edge on the cycle, throw it out – the graph is still connected (why?)

• Repeat until no more cycles
Finding a Spanning Tree

A subtractive method

- Start with the whole graph – it is connected
- If there is a cycle, pick an edge on the cycle, throw it out – the graph is still connected (why?)
- Repeat until no more cycles
Finding a Spanning Tree

A subtractive method

• Start with the whole graph – it is connected

• If there is a cycle, pick an edge on the cycle, throw it out – the graph is still connected (why?)

• Repeat until no more cycles
Finding a Spanning Tree

An additive method

• Start with no edges – there are no cycles

• If more than one connected component, insert an edge between them – still no cycles (why?)

• Repeat until only one component
Finding a Spanning Tree

An additive method

• Start with no edges – there are no cycles

• If more than one connected component, insert an edge between them – still no cycles (why?)

• Repeat until only one component
Finding a Spanning Tree

An additive method

• Start with no edges – there are no cycles

• If more than one connected component, insert an edge between them – still no cycles (why?)

• Repeat until only one component
Finding a Spanning Tree

An additive method

• Start with no edges – there are no cycles

• If more than one connected component, insert an edge between them – still no cycles (why?)

• Repeat until only one component
Finding a Spanning Tree

An additive method

- Start with no edges – there are no cycles
- If more than one connected component, insert an edge between them – still no cycles (why?)
- Repeat until only one component
Finding a Spanning Tree

An additive method

• Start with no edges – there are no cycles

• If more than one connected component, insert an edge between them – still no cycles (why?)

• Repeat until only one component
Minimum Spanning Trees

- Suppose edges are weighted, and we want a spanning tree of minimum cost (sum of edge weights)

- Useful in network routing & other applications
3 Greedy Algorithms

A. Find a max weight edge – if it is on a cycle, throw it out, otherwise keep it.
3 Greedy Algorithms

A. Find a max weight edge – if it is on a cycle, throw it out, otherwise keep it.
A. Find a max weight edge – if it is on a cycle, throw it out, otherwise keep it
3 Greedy Algorithms

A. Find a max weight edge – if it is on a cycle, throw it out, otherwise keep it.
3 Greedy Algorithms

A. Find a max weight edge – if it is on a cycle, throw it out, otherwise keep it.
3 Greedy Algorithms

A. Find a max weight edge – if it is on a cycle, throw it out, otherwise keep it.
3 Greedy Algorithms

A. Find a max weight edge – if it is on a cycle, throw it out, otherwise keep it
3 Greedy Algorithms

A. Find a max weight edge – if it is on a cycle, throw it out, otherwise keep it
3 Greedy Algorithms

B. Find a min weight edge – if it forms a cycle with edges already taken, throw it out, otherwise keep it

Kruskal's algorithm
3 Greedy Algorithms

B. Find a min weight edge – if it forms a cycle with edges already taken, throw it out, otherwise keep it.

Kruskal's algorithm
3 Greedy Algorithms

B. Find a min weight edge – if it forms a cycle with edges already taken, throw it out, otherwise keep it

Kruskal's algorithm
3 Greedy Algorithms

B. Find a min weight edge – if it forms a cycle with edges already taken, throw it out, otherwise keep it

Kruskal's algorithm
3 Greedy Algorithms

B. Find a min weight edge – if it forms a cycle with edges already taken, throw it out, otherwise keep it.

Kruskal's algorithm
3 Greedy Algorithms

B. Find a min weight edge – if it forms a cycle with edges already taken, throw it out, otherwise keep it.

Kruskal's algorithm
3 Greedy Algorithms

B. Find a min weight edge – if it forms a cycle with edges already taken, throw it out, otherwise keep it

Kruskal's algorithm
3 Greedy Algorithms

C. Start with any vertex, add min weight edge extending that connected component that does not form a cycle

Prim's algorithm
(reminiscent of Dijkstra's algorithm)
3 Greedy Algorithms

C. Start with any vertex, add min weight edge extending that connected component that does not form a cycle

Prim's algorithm
(reminiscent of Dijkstra's algorithm)
3 Greedy Algorithms

C. Start with any vertex, add min weight edge extending that connected component that does not form a cycle

Prim's algorithm
(reminiscent of Dijkstra's algorithm)
3 Greedy Algorithms

C. Start with any vertex, add min weight edge extending that connected component that does not form a cycle

Prim's algorithm
(reminiscent of Dijkstra's algorithm)
3 Greedy Algorithms

C. Start with any vertex, add min weight edge extending that connected component that does not form a cycle

Prim's algorithm
(reminiscent of Dijkstra's algorithm)
3 Greedy Algorithms

C. Start with any vertex, add min weight edge extending that connected component that does not form a cycle

Prim's algorithm
(reminiscent of Dijkstra's algorithm)
3 Greedy Algorithms

C. Start with any vertex, add min weight edge extending that connected component that does not form a cycle

Prim's algorithm
(reminiscent of Dijkstra's algorithm)
All 3 greedy algorithms give the same minimum spanning tree (assuming distinct edge weights)
Prim’s Algorithm (pseudo-code)

```plaintext
prim(s) {
    D[s] = 0; mark s; //start vertex
    while (some vertices are unmarked) {
        u = unmarked vertex with smallest D;
        mark u;
        for (each v adj to u) {
            D[v] = min(D[v], w(u,v));
        }
    }
}
```

- \(O(n^2)\) for adj matrix
 - While-loop is executed \(n\) times
 - For-loop takes \(O(n)\) time
- \(O(m + n \log n)\) for adj list
 - Use a PQ
 - Regular PQ produces time \(O(n + m \log m)\)
 - Can improve to \(O(m + n \log n)\) using a fancier heap
Greedy Algorithms

- These are examples of Greedy Algorithms
- The Greedy Strategy is an algorithm design technique
 - Like Divide & Conquer
- Greedy algorithms are used to solve optimization problems
 - The goal is to find the best solution
- Works when the problem has the greedy-choice property
 - A global optimum can be reached by making locally optimum choices
- Example: the Change Making Problem: Given an amount of money, find the smallest number of coins to make that amount
- Solution: Use a Greedy Algorithm
 - Give as many large coins as you can
- This greedy strategy produces the optimum number of coins for the US coin system
- Different money system ⇒ greedy strategy may fail
 - Example: old UK system
Similar Code Structures

```java
while (some vertices unmarked) {
    u = best of unmarked vertices;
    mark u;
    for (each v adj to u) {
        update v;
    }
}
```

• BFS
 – best: next in queue
 – update: $D[w] = D[v]+1$

• Dijkstra
 – best: next in PQ
 – update: $D[w] = \min D[w], D[v]+c(v,w)$

• Prim
 – best: next in PQ
 – update: $D[w] = \min D[w], c(v,w)$