Graph Representations

Adjacency List

Adjacency Matrix

(this shows outgoing edges only, but can also include incoming)
Adjacency Matrix or Adjacency List?

• **Adjacency Matrix**
 - Uses space $O(n^2)$
 - Can iterate over all edges in time $O(n^2)$
 - Can answer “Is there an edge from u to v?” in $O(1)$ time
 - Better for dense graphs (lots of edges) ($m \sim n^2$)

• **Adjacency List**
 - Uses space $O(m+n)$
 - Can iterate over all edges in time $O(m+n)$
 - Can answer “Is there an edge from u to v?” in $O(d(u))$ time
 - Better for sparse graphs (fewer edges) ($m << n^2$)

- $n =$ number of vertices
- $m =$ number of edges
- $d(u) =$ outdegree of u
Representation in Java

• Like adjacency lists, but uses Sets instead of Lists
• class Digraph<N,E>
• Nodes<N> and Edges<E>
 ▪ \(N \) is the type of data stored at the nodes (e.g. name)
 ▪ \(E \) is the type of data stored at the edges (e.g. distance)
• Each Edge knows its endpoints (two Nodes)
• Each Node knows the Set of its outgoing Edges and the Set of its incoming Edges
• This representation may look complicated, but it allows insertion and deletion of Nodes and Edges in constant time
Example

nodes

edges

source target

A

B

C

D

E

1 \{●●\} \{\}\n
2 \{●\} \{●●\}

3 \{\} \{●●\}

4 \{●●\} \{●\}

1 2 3 4

C D

A B

E

source target

A

B

C

D

E

1 2 3 4

C D

A B

E
Example
Caveat: Deleting Nodes and Edges

• When you delete an Edge, you must remove it from the Edge sets of its endpoints

• When you delete a Node, you must also delete all adjacent Edges
Caveat: Deleting Nodes and Edges

- When you delete an Edge, you must remove it from the Edge sets of its endpoints.

- When you delete a Node, you must also delete all adjacent Edges.
Shortest Paths in Graphs

- Finding the shortest (min-cost) path in a graph is a problem that occurs often
 - Find the shortest route between Ithaca and West Lafayette, IN
 - Result depends on our notion of cost
 - Least mileage
 - Least time
 - Cheapest
 - Least boring
 - All of these “costs” can be represented as edge weights

- How do we find a shortest path?
Shortest Paths in Graphs

Single-source shortest path problem: Given nonnegative edge weights $w(u,v)$ and a start node s, find the shortest path from s to every other node (length of a path = sum of edge weights)
Shortest Paths

• Let \(d(s,u) \) denote the distance (length of shortest path) from \(s \) to \(u \). In this example,

• \(d(1,1) = 0 \) (distance from a node to itself is always 0)
• \(d(1,2) = 1.6 \) (the shortest path goes through node 4)
• \(d(1,3) = 2.5 \) (the shortest path goes through nodes 4 and 2)
• \(d(1,4) = 1.5 \)
Dijkstra's Algorithm

- Start with $X = \{s\}$
 - X is the set of nodes for which we have already determined the shortest path from s

- For each node $u \notin X$, initially set $D(u) = w(s, u)$
 - $D(u)$ will be the shortest distance from s to u through only nodes in X (except for u)
 - $D(2) = 2.4$ \quad $D(3) = \infty$ \quad $D(4) = 1.5$
Dijkstra's Algorithm

• Find \(u \notin X \) such that \(D(u) \) minimum, add it to \(X \)
 – at that point, we know \(d(s,u) = D(u) \)

• For each node \(v \notin X \) such that \((u,v) \in E \), if \(D(u) + w(u,v) < D(v) \), set \(D(v) = D(u) + w(u,v) \)
 – I.e., check if going through \(u \) to get to \(v \) is better
 – \(D(2) = 2.4 \) \quad D(3) = \infty \quad D(4) = 1.5 \)
Dijkstra's Algorithm

- Find $u \notin X$ such that $D(u)$ minimum, add it to X
 - at that point, we know $d(s,u) = D(u)$ $u = 4$

- For each node $v \notin X$ such that $(u,v) \in E$, if $D(u) + w(u,v) < D(v)$, set $D(v) = D(u) + w(u,v)$
 - I.e., check if going through u to get to v is better
 - $D(2) = 2.4$ $D(3) = \infty$ $D(4) = 1.5 = d(1,4)$
Dijkstra's Algorithm

- Find \(u \notin X \) such that \(D(u) \) minimum, add it to \(X \)
 - at that point, we know \(d(s,u) = D(u) \) \(u = 4 \)

- For each node \(v \notin X \) such that \((u,v) \in E \),
 if \(D(u) + w(u,v) < D(v) \), set \(D(v) = D(u) + w(u,v) \)
 - I.e., check if going through \(u \) to get to \(v \) is better
 - \(D(2) = 2.4 \), \(1.6 \) \(\times \) \(4.6 \) \(\times \) \(D(4) = 1.5 = d(1,4) \)
Dijkstra's Algorithm

- Find $u \notin X$ such that $D(u)$ minimum, add it to X
 - at that point, we know $d(s,u) = D(u)$
- For each node $v \notin X$ such that $(u,v) \in E$, if $D(u) + w(u,v) < D(v)$, set $D(v) = D(u) + w(u,v)$
 - i.e., check if going through u to get to v is better
 - $D(2) = 1.6$ $D(3) = 4.6$ $D(4) = 1.5 = d(1,4)$
Dijkstra's Algorithm

• Find $u \notin X$ such that $D(u)$ minimum, add it to X

 – at that point, we know $d(s,u) = D(u)$ $u = 2$

• For each node $v \notin X$ such that $(u,v) \in E$, if $D(u) + w(u,v) < D(v)$, set $D(v) = D(u) + w(u,v)$

 – I.e., check if going through u to get to v is better

 – $D(2) = 1.6 = d(1,2)$ $D(3) = 4.6$ $D(4) = 1.5 = d(1,4)$
Dijkstra's Algorithm

- Find \(u \notin X \) such that \(D(u) \) minimum, add it to \(X \)
 - at that point, we know \(d(s,u) = D(u) \) \(u = 2 \)

- For each node \(v \notin X \) such that \((u,v) \in E \), if \(D(u) + w(u,v) < D(v) \), set \(D(v) = D(u) + w(u,v) \)
 - I.e., check if going through \(u \) to get to \(v \) is better
 - \(D(2) = 1.6 = d(1,2) \)
 - \(D(3) = 4.6 \)
 - \(D(4) = 1.5 = d(1,4) \)
Dijkstra's Algorithm

- Find $u \not\in X$ such that $D(u)$ minimum, add it to X
 - at that point, we know $d(s,u) = D(u)$
- For each node $v \not\in X$ such that $(u,v) \in E$, if $D(u) + w(u,v) < D(v)$, set $D(v) = D(u) + w(u,v)$
 - i.e., check if going through u to get to v is better
 - $D(2) = 1.6 = d(1,2)$ $D(3) = 2.5$ $D(4) = 1.5 = d(1,4)$
Dijkstra's Algorithm

- Find \(u \notin X \) such that \(D(u) \) minimum, add it to \(X \)
 - at that point, we know \(d(s,u) = D(u) \) \(u = 3 \)

- For each node \(v \notin X \) such that \((u,v) \in E\), if \(D(u) + w(u,v) < D(v) \), set \(D(v) = D(u) + w(u,v) \)
 - i.e., check if going through \(u \) to get to \(v \) is better
 - \(D(2) = 1.6 = d(1,2) \) \(D(3) = 2.5 = d(1,3) \) \(D(4) = 1.5 = d(1,4) \)
Dijkstra's Algorithm

Proof of correctness – show by induction that the following are invariants of the loop:

• If $u \in X$, then $D(u) = d(s,u)$
• If $u \in X$ and $v \notin X$, then $d(s,u) \leq d(s,v)$
• For all u, $D(u)$ is the length of the shortest path from s to u such that all nodes on the path (except possibly u) are in X

Implementation:

• Use a priority queue for the nodes not yet taken – priority is $D(u)$
Complexity

• Every edge is examined once when its source is taken into X

• A vertex may be placed in the priority queue multiple times, but at most once for each incoming edge

• Number of insertions and deletions into priority queue = $m + 1$, where $m = |E|$

• Total complexity = $O(m \log m)$
• There are faster but more complicated algorithms for single-source, shortest-path problem that run in time $O(n \log n + m)$ using something called *Fibonacci heaps*.

• Dijkstra's algorithm does not work with negative weights, we need a more complicated algorithm called *Warshall's algorithm*.
Dijkstra’s Algorithm
(pseudocode)

dijkstra(s) {
 D[s] = 0;
 for (t ≠ s) D[t] = w(s,t);
 mark s;
 while (there exist unmarked nodes) {
 u = unmarked node with smallest D;
 mark u;
 for (each v adjacent to u) {
 D[v] = min(D[v], D[u] + w(u,v));
 }
 }
}
Shortest Paths for Unweighted Graphs – A Special Case

- Use breadth-first search
- Time is $O(n + m)$ in adj list representation, $O(n^2)$ in adj matrix representation