Shortest Paths

Adjacency Matrix or Adjacency List?

- **Adjacency Matrix**
 - Uses space $O(n^2)$
 - Can iterate over all edges in time $O(n^2)$
 - Can answer "Is there an edge from u to v?" in $O(1)$ time
 - Better for *dense* graphs (lots of edges) ($m \sim n^2$)

- **Adjacency List**
 - Uses space $O(m+n)$
 - Can iterate over all edges in time $O(m+n)$
 - Can answer "Is there an edge from u to v?" in $O(d(u))$ time
 - Better for *sparse* graphs (fewer edges) ($m \ll n^2$)

- n = number of vertices
- m = number of edges
- $d(u)$ = outdegree of u

Graph Representations

Relation in Java

- Like adjacency lists, but uses Sets instead of Lists
- *class* Digraph<N,E>*
- *Nodes<N>* and *Edges<E>*
 - N is the type of data stored at the nodes (e.g. name)
 - E is the type of data stored at the edges (e.g. distance)
- Each Edge knows its endpoints (two Nodes)
- Each Node knows the Set of its outgoing Edges and the Set of its incoming Edges
- This representation may look complicated, but it allows insertion and deletion of Nodes and Edges in constant time

Example

Example
Caveat: Deleting Nodes and Edges

• When you delete an Edge, you must remove it from the Edge sets of its endpoints.
• When you delete a Node, you must also delete all adjacent Edges.

Shortest Paths in Graphs

• Finding the shortest (min-cost) path in a graph is a problem that occurs often.
 – Find the shortest route between Ithaca and West Lafayette, IN.
 – Result depends on our notion of cost.
 • Least mileage
 • Least time
 • Cheapest
 • Least boring
 – All of these “costs” can be represented as edge weights.
• How do we find a shortest path?

Shortest Paths

• Let \(d(s,u) \) denote the distance (length of shortest path) from \(s \) to \(u \). In this example,
 • \(d(1,1) = 0 \) (distance from a node to itself is always 0)
 • \(d(1,2) = 1.6 \) (the shortest path goes through node 4)
 • \(d(1,3) = 2.5 \) (the shortest path goes through nodes 4 and 2)
 • \(d(1,4) = 1.5 \)

Dijkstra’s Algorithm

• Start with \(X = \{s\} \).
 – \(X \) is the set of nodes for which we have already determined the shortest path from \(s \).
• For each node \(u \not\in X \), initially set \(D(u) = w(s,u) \).
 – \(D(u) \) will be the shortest distance from \(s \) to \(u \) through only nodes in \(X \) (except for \(u \)).
 – \(D(2) = 2.4 \)
 – \(D(3) = \) incompletely visible
 – \(D(4) = 1.5 \)
Dijkstra's Algorithm

- Find \(u \notin X \) such that \(D(u) \) minimum, add it to \(X \)
 - at that point, we know \(d(s,u) = D(u) \)
- For each node \(v \notin X \) such that \((u,v) \in E \), if \(D(u) + w(u,v) < D(v) \), set \(D(v) = D(u) + w(u,v) \)
 - i.e., check if going through \(u \) to get to \(v \) is better
 - \(D(2) = 2.4 \) \(D(3) = \infty \) \(D(4) = 1.5 \) = \(d(1,4) \)

• Find \(u \notin X \) such that \(D(u) \) minimum, add it to \(X \)
 - at that point, we know \(d(s,u) = D(u) \) \(u = 4 \)
• For each node \(v \notin X \) such that \((u,v) \in E \), if \(D(u) + w(u,v) < D(v) \), set \(D(v) = D(u) + w(u,v) \)
 - i.e., check if going through \(u \) to get to \(v \) is better
 - \(D(2) = 1.6 \) \(D(3) = 4.6 \) \(D(4) = 1.5 \) = \(d(1,4) \)

• Find \(u \notin X \) such that \(D(u) \) minimum, add it to \(X \)
 - at that point, we know \(d(s,u) = D(u) \) \(u = 2 \)
• For each node \(v \notin X \) such that \((u,v) \in E \), if \(D(u) + w(u,v) < D(v) \), set \(D(v) = D(u) + w(u,v) \)
 - i.e., check if going through \(u \) to get to \(v \) is better
 - \(D(2) = 1.6 \) = \(d(1,2) \) \(D(3) = 4.6 \) \(D(4) = 1.5 \) = \(d(1,4) \)
Dijkstra's Algorithm

• Find \(u \not\in X \) such that \(D(u) \) minimum, add it to \(X \)
 – at that point, we know \(d(s,u) = D(u) \)
• For each node \(v \not\in X \) such that \((u,v) \in E \)
 if \(D(u) + w(u,v) < D(v) \), set \(D(v) = D(u) + w(u,v) \)
 – i.e., check if going through \(u \) to get to \(v \) is better
 – \(D(2) = 1.6 = d(1,2) \)
 – \(D(3) = 2.5 = d(1,3) \)
 – \(D(4) = 1.5 = d(1,4) \)

Proof of correctness – show by induction that the following are invariants of the loop:
• If \(u \in X \), then \(D(u) = d(s,u) \)
• If \(u \in X \) and \(v \not\in X \), then \(d(s,u) \leq d(s,v) \)
• For all \(u \), \(D(u) \) is the length of the shortest path from \(s \) to \(u \) such that all nodes on the path (except possibly \(u \)) are in \(X \)

Implementation:
• Use a priority queue for the nodes not yet taken – priority is \(D(u) \)

Complexity
• Every edge is examined once when its source is taken into \(X \)
• A vertex may be placed in the priority queue multiple times, but at most once for each incoming edge
• Number of insertions and deletions into priority queue = \(m + 1 \), where \(m = |E| \)
• Total complexity = \(O(m \log m) \)

Notes
• There are faster but more complicated algorithms for single-source, shortest-path problem that run in time \(O(n \log n + m) \) using something called Fibonacci heaps
• Dijkstra's algorithm does not work with negative weights, we need a more complicated algorithm called Warshall's algorithm

Dijkstra's Algorithm (pseudocode)

```plaintext
Dijkstra(s) {
  D[s] = 0;
  for (t ≠ s) \( D[t] = w(s,t) \):
    mark s;
    while (there exist unmarked nodes) {
      u = unmarked node with smallest \( D[u] \);
      mark u;
      for (each v adjacent to u) {
        \( D[v] = \min(D[v], D[u] + w(u,v)) \);
      }
    }
}```
Shortest Paths for Unweighted Graphs – A Special Case

- Use breadth-first search
- Time is $O(n + m)$ in adj list representation, $O(n^2)$ in adj matrix representation

![Graph Diagram]