Balanced Search Trees

Lecture 18
CS2110 – Fall 2011
Some Search Structures

• **Sorted Arrays**
 – Advantages
 • Search in $O(\log n)$ time (binary search)
 – Disadvantages
 • Need to know size in advance
 • Insertion, deletion $O(n)$ – need to shift elements

• **Lists**
 – Advantages
 • No need to know size in advance
 • Insertion, deletion $O(1)$ (not counting search time)
 – Disadvantages
 • Search is $O(n)$, even if list is sorted
Balanced Search Trees

• Best of both!
 – Search, insert, delete in $O(\log n)$ time
 – No need to know size in advance

• Several flavors
 – AVL trees, 2-3 trees, red-black trees, skip lists, random treaps, ...
Review – Binary Search Trees

- Every node has a *left child*, a *right child*, both, or neither
- Data elements are drawn from a totally ordered set (e.g., Comparable)
- Every node contains one data element
- Data elements are ordered in *inorder*
A Binary Search Tree
Binary Search Trees

In any subtree:

• all elements smaller than the element at the root are in the left subtree

• all elements larger than the element at the root are in the right subtree
Search

To search for an element x:

- if tree is empty, return false
- if $x = \text{object at root}$, return true
- If $x < \text{object at root}$, search left subtree
- If $x > \text{object at root}$, search right subtree
Search

Example: search for 13
Search

```
       25
      /  \
     6   47
    /     /  \
   1     20  29
  / \
13  13
```

13?
Search

```
   6
  / \  \
 1   25
  \   /
   13 20
```

The number 13 is found in the tree.
Search

25

6

1

13

20

13

29

47

80

54

48

91
Search

```
25
/   \
6    47
|     |
1   20  29
    |     |
   13   29
      |     |
      48   91
```
Search

```java
boolean treeSearch(T x) { //T extends Comparable<T>
    int c = x.compareTo(datum);
    if (c == 0) return true; // found
    if (c < 0 && left != null)
        return left.treeSearch(x);
    return right != null && right.treeSearch(x);
}
```
Insertion

To insert an element \(x \):

- search for \(x \) – if there, just return
- when arrive at a leaf \(y \), make \(x \) a child of \(y \)
 - left child if \(x < y \)
 - right child if \(x > y \)
Insertion

Example: insert 15
Insertion

```
      25
     /  
   6    47
 / 
1 20
//
13
```

15 ?
Insertion
Insertion

25

6

1 13

15?

20

29

47

80

54

48

91
Insertion
Insertion
void insert(T x) { //T extends Comparable<T>
 int c = x.compareTo(datum);
 if (c == 0) return;
 if (c < 0) {
 if (left != null) left.insert(x);
 else left = new TreeNode<T>(x);
 } else {
 if (right != null) right.insert(x);
 else right = new TreeNode<T>(x);
 }
}
Deletion

To delete an element x:

- remove x from its node – this creates a hole
- if the node was a leaf, just delete it
- find greatest y less than x in the left subtree (or least y greater than x in the right subtree), move it to x's node
- this creates a hole where y was – repeat
Deletion

To find least y greater than x:
 - follow left children as far as possible in right subtree
Deletion

To find greatest y less than x:

• follow right children as far as possible in left subtree
Example: delete 25
Deletion

```
       25
      /  \
     6   47
    / \  /  \
   1   20 29  80
  /   /   /   /
 13 48 54 91
```
Deletion
Deletion
Deletion
Deletion

```
    20
   /   \
   6    47
  /     /  \
 1  13   29  80
     /    /    \
    13   54   91
```

Deletion
Deletion

```
20
/   \
6    47
/ \
1   13   29
/ \
13 29
/ \
48 54
/ \
48 54
```
Example: delete 47
Deletion
Deletion

```
           20
          /   
         6    80
        /     /
       1     54
      /     /  
     13    48
    /     /   
   29    91
```
Deletion
Deletion
Deletion

```
       20
      /  
     6    29
    / 
   1   13
     /    
    80    
   / 
  54  91
     / 
    48
```
Example: delete 29
Deletion
Deletion
Deletion
Deletion
Deletion
Deletion

```plaintext
  20
 /   \
6    48
 /     \
1      80
     /    \
   13     54
     /     \
    91
```

Deletion

```
  20
 /   \
6    48
   /   /
  13  80
     /   /
    54  91
```

Observation

- These operations take time proportional to the height of the tree (length of the longest path).
- $O(n)$ if tree is not sufficiently balanced.

Bad case for search, insertion, and deletion – essentially like searching a list.
Solution

Try to keep the tree \textit{balanced} (all paths roughly the same length)
Balanced Trees

- Size is exponential in height
- Height = $\log_2(size)$
- Search, insert, delete will be $O(\log n)$
Creating a Balanced Tree

Creating one from a sorted array:

- Find the median, place that at the root
- Recursively form the left subtree from the left half of the array and the right subtree from the right half of the array
Keeping the Tree Balanced

• Insertions and deletions can put tree out of balance – we may have to rebalance it
• Can we do this efficiently?
AVL Trees

Adelson-Velsky and Landis, 1962

AVL Invariant:
The difference in height between the left and right subtrees of any node is never more than one.
An AVL Tree

- Nonexistent children are considered to have height -1.
- Note that paths can differ in length by more than 1 (e.g., paths to 2, 48).
AVL Trees are Balanced

The AVL invariant implies that:

- Size is at least exponential in height
 - \(n \geq \varphi^d \), where \(\varphi = (1 + \sqrt{5})/2 \approx 1.618 \), the golden ratio!

- Height is at most logarithmic in size
 - \(d \leq \log n / \log \varphi \approx 1.44 \log n \)
AVL Trees are Balanced

AVL Invariant:
The difference in height between the left and right subtrees of any node is never more than one

To see that \(n \geq \varphi^d \), look at the smallest possible AVL trees of each height

\[A_0 \quad A_1 \quad A_2 \quad A_3 \]
AVL Trees are Balanced

AVL Invariant:
The difference in height between the left and right subtrees of any node is never more than one.

To see that $n \geq \varphi^d$, look at the *smallest possible* AVL trees of each height.
AVL Trees are Balanced

AVL Invariant:
The difference in height between the left and right subtrees of any node is never more than one.

To see that $n \geq \varphi^d$, look at the smallest possible AVL trees of each height.
AVL Trees are Balanced

\[A_0 = 1 \]
\[A_1 = 2 \]
\[A_d = A_{d-1} + A_{d-2} + 1, \quad d \geq 2 \]
AVL Trees are Balanced

\[A_0 = 1 \]
\[A_1 = 2 \]
\[A_d = A_{d-1} + A_{d-2} + 1, \quad d \geq 2 \]

1 2 4 7 12 20 33 54 88 ...
AVL Trees are Balanced

\[A_0 = 1 \]
\[A_1 = 2 \]
\[A_d = A_{d-1} + A_{d-2} + 1, \quad d \geq 2 \]

1 2 4 7 12 20 33 54 88 ...

1 1 2 3 5 8 13 21 34 55 ...
The Fibonacci sequence
AVL Trees are Balanced

\[A_0 = 1 \]
\[A_1 = 2 \]
\[A_d = A_{d-1} + A_{d-2} + 1, \quad d \geq 2 \]

1 2 4 7 12 20 33 54 88 ...
1 1 2 3 5 8 13 21 34 55 ...

\[A_d = F_{d+2} - 1 = O(\phi^d) \]
Rebalancing

• Insertion and deletion can invalidate the AVL invariant
• May have to rebalance
Rebalancing

Rotation
• A local rebalancing operation
• Preserves inorder ordering of the elements
• The AVL invariant can be reestablished with at most $O(\log n)$ rotations up and down the tree

\[
\begin{align*}
\text{A} & \rightarrow \text{B} \\
\text{B} & \rightarrow \text{C} \\
\text{C} & \rightarrow \text{X} \\
\text{X} & \rightarrow \text{Y} \\
\text{Y} & \rightarrow \text{W} \\
\text{W} & \rightarrow \text{V} \\
\text{V} & \rightarrow \text{U} \\
\text{U} & \rightarrow \text{A}
\end{align*}
\]
Rebalancing

Example: delete 27
Rebalancing

```
25
 /  \
6   47
 / \
2  20 /  \
|   |    |   |
13  29  80
 |
  |
  48
```
Rebalancing
Rebalancing
Rebalancing
Rebalancing
2-3 Trees

Another balanced tree scheme

- Data stored only at the leaves
- Ordered left-to-right
- All paths of the same length
- Every non-leaf has either 2 or 3 children
- Each internal node has smallest, largest element in its subtree (for searching)
2-3 Trees

smallest 2-3 tree of height $d = 3$
$2^d = 8$ data elements

largest 2-3 tree of height $d = 3$
$3^d = 27$ data elements

- number of elements satisfies $2^d \leq n \leq 3^d$
- height satisfies $d \leq \log n$
Insertion in 2-3 Trees
Insertion in 2-3 Trees

want to insert new element here
Insertion in 2-3 Trees
Insertion in 2-3 Trees

want to insert new element here
Insertion in 2-3 Trees
Insertion in 2-3 Trees
Insertion in 2-3 Trees
Insertion in 2-3 Trees
Deletion in 2-3 Trees

want to delete this element
Deletion in 2-3 Trees
Deletion in 2-3 Trees

want to delete this element
Deletion in 2-3 Trees

If neighbor has 3 children, borrow one
Deletion in 2-3 Trees

If neighbor has 3 children, borrow one
Deletion in 2-3 Trees

If neighbor has 2 children, coalesce with neighbor
Deletion in 2-3 Trees

If neighbor has 2 children, coalesce with neighbor
Deletion in 2-3 Trees

This may cascade up the tree!
Deletion in 2-3 Trees

This may cascade up the tree!
Deletion in 2-3 Trees

This may cascade up the tree!
Deletion in 2-3 Trees

This may cascade up the tree!
Conclusion

Balanced search trees are good

- Search, insert, delete in $O(\log n)$ time
- No need to know size in advance
- Several different versions
 - AVL trees, 2-3 trees, red-black trees, skip lists, random treaps, Huffman trees, ...
 - find out more about them in CS4820