Standard ADTs

Lecture 16
CS2110 – Fall 2011
Announcements

• Quiz Thursday!
• Topics:
 ▪ Searching, sorting, asymptotic complexity (Lectures 11 & 12)
 ▪ ADTs and their implementations – Stacks, Queues, Priority Queues, Sets, Dictionaries, Arrays, Lists, Hashtables (Lecture 16) (today!)
Abstract Data Types (ADTs)

• A method for achieving abstraction for data structures and algorithms

• ADT = model + operations

• Describes what each operation does, but not how it does it

• An ADT is independent of its implementation

• In Java, an interface corresponds well to an ADT
 ▪ The interface describes the operations, but says nothing at all about how they are implemented

• Example: Stack interface/ADT

```java
public interface Stack<T> {
    public void push(T x);
    public T pop();
    public T peek();
    public boolean isEmpty();
    public void clear();
}
```
Queues & Priority Queues

• ADT Queue
 ▪ Operations:
    ```java
    void add(T x);
    T poll();
    T peek();
    boolean isEmpty();
    void clear();
    ```
 ▪ Where used:
 ▪ Simple job scheduler (e.g., print queue)
 ▪ Wide use within other algorithms

• ADT PriorityQueue
 ▪ Contains objects of type
    ```java
    T extends Comparable<T>
    ```
 ▪ Operations:
    ```java
    void insert(T x);
    T getMax();
    T peekAtMax();
    boolean isEmpty();
    void clear();
    ```
 ▪ Where used:
 ▪ Job scheduler for OS
 ▪ Event-driven simulation
 ▪ Can be used for sorting
 ▪ Wide use within other algorithms
Sets

• ADT Set
 ▪ Operations:
    ```java
    void insert(T element);
    boolean contains(T element);
    void remove(T element);
    boolean isEmpty();
    void clear();
    ```

• Where used:
 ▪ Wide use within other algorithms

• Note: no duplicates allowed
 ▪ A “set” with duplicates is sometimes called a multiset or bag
Dictionaries

• ADT Dictionary (aka Map)
 ▪ Like Java interface `Map<K,V>`
 ▪ Operations:
 void insert(K key, V value);
 void update(K key, V value);
 V find(K key);
 void remove(K key);
 boolean isEmpty();
 void clear();

• Think of: key = word; value = definition

• Where used:
 ▪ Symbol tables
 ▪ Wide use within other algorithms
Data Structure Building Blocks

• These are *implementation* “building blocks” that are often used to build more-complicated data structures
 ▪ Arrays
 ▪ Linked Lists
 ✤ Singly linked
 ✤ Doubly linked
 ▪ Binary Trees
 ▪ Graphs
 ✤ Adjacency matrix
 ✤ Adjacency list
Array Implementation of Stack

class ArrayStack implements Stack {

 private Object[] array; //array that holds the Stack
 private int index = 0; //first empty slot in Stack

 public ArrayStack(int maxSize) {
 array = new Object[maxSize];
 }
 public void push(Object x) { array[index++] = x; }
 public Object pop() { return array[--index]; }
 public Object peek() { return array[index-1]; }
 public boolean isEmpty() { return index == 0; }
 public void clear() { index = 0; }
}

Question: What can go wrong?
Linked List Implementation of Stack

class ListStack<T> implements Stack<T> {
 private Node head = null; //Head of list that
 //holds the Stack

 public void push(T x) { head = new Node(x, head); }
 public T pop() {
 Node temp = head;
 head = head.next;
 return temp.data;
 }
 public T peek() { return head.data; }
 public boolean isEmpty() { return head == null; }
 public void clear() { head = null; }
}

O(1) worst-case time for each operation (but constant is larger)

Note that array implementation can overflow, but the
linked list version cannot
Queue Implementations

• Possible implementations

 • Recall: operations are add, poll, peek,…

 • For linked-list
 • all operations are O(1)

 • For array with head at a[0]
 • poll takes time O(n)
 • other ops are O(1)
 • can overflow

 • For array with wraparound
 • all operations are O(1)
 • can overflow
A Queue From 2 Stacks

- **push** pushes onto stack A
- **pop** pops from stack B
- If B is empty, move all elements from stack A to stack B
- Some individual operations are costly, but still $O(1)$ time per operation over the long run
Dealing with Overflow

• For array implementations of stacks and queues, use *table doubling*
• Check for overflow with each insert op
• If table will overflow:
 ▪ Allocate a new table twice the size
 ▪ Copy everything over
• The operations that cause overflow are expensive, but still constant time per operation over the long run (proof later)
Goal: Design a *Dictionary* (aka *Map*)

- Operations:

  ```java
  void insert(key, value)
  void update(key, value)
  Object find(key)
  void remove(key)
  boolean isEmpty()
  void clear()
  ```

Array implementation: Using an array of (key, value) pairs

<table>
<thead>
<tr>
<th>Operation</th>
<th>Unsorted</th>
<th>Sorted</th>
</tr>
</thead>
<tbody>
<tr>
<td>insert</td>
<td>O(1)</td>
<td>O(n)</td>
</tr>
<tr>
<td>update</td>
<td>O(n)</td>
<td>O(log n)</td>
</tr>
<tr>
<td>find</td>
<td>O(n)</td>
<td>O(log n)</td>
</tr>
<tr>
<td>remove</td>
<td>O(1)*</td>
<td>O(n)</td>
</tr>
</tbody>
</table>

*not counting lookup time

n is the number of items currently held in the dictionary
Hashing

- Idea: compute an array index via a *hash function* h
- U is the universe of keys
- $h: U \rightarrow [0,\ldots,m-1]$ where $m =$ hash table size
- Usually $|U|$ is much bigger than m, so *collisions* are possible (two elements with the same hash code)
- h should
 - be easy to compute
 - avoid collisions
 - have roughly equal probability for each table position

Typical situation:

- $U =$ all legal identifiers

Typical hash function:

- h converts each letter to a number, then compute a function of these numbers

Java **HashSet, HashMap**
A Hashing Example

- Suppose each word below has the following hash code:

<table>
<thead>
<tr>
<th>Month</th>
<th>Hash Code</th>
</tr>
</thead>
<tbody>
<tr>
<td>jan</td>
<td>7</td>
</tr>
<tr>
<td>feb</td>
<td>0</td>
</tr>
<tr>
<td>mar</td>
<td>5</td>
</tr>
<tr>
<td>apr</td>
<td>2</td>
</tr>
<tr>
<td>may</td>
<td>4</td>
</tr>
<tr>
<td>jun</td>
<td>7</td>
</tr>
<tr>
<td>jul</td>
<td>3</td>
</tr>
<tr>
<td>aug</td>
<td>7</td>
</tr>
<tr>
<td>sep</td>
<td>2</td>
</tr>
<tr>
<td>oct</td>
<td>5</td>
</tr>
<tr>
<td>nov</td>
<td>4</td>
</tr>
<tr>
<td>dec</td>
<td>1</td>
</tr>
</tbody>
</table>

- How do we resolve collisions?
 - use chaining: each table position is the head of a list
 - for any particular problem, this might work terribly

- In practice, using a good hash function, we can assume each position is equally likely
Analysis for Hashing with Chaining

- Analyzed in terms of load factor $\lambda = \frac{n}{m} = \frac{\text{(items in table)}}{\text{(table size)}}$

- We count the expected number of probes (key comparisons)

- Goal: Determine expected number of probes for an unsuccessful search

 Expected number of probes for an unsuccessful search = average number of items per table position = $\frac{n}{m} = \lambda$

- Expected number of probes for a successful search = $1 + \frac{\lambda}{2} = O(\lambda)$

- Worst case is $O(n)$
Table Doubling

• We know each operation takes time $O(\lambda)$ where $\lambda=\frac{n}{m}$
 ▪ So it gets worse as n gets large relative to m

• Table Doubling:
 ▪ Set a bound for λ (call it λ_0)
 ▪ Whenever λ reaches this bound:
 • Create a new table twice as big
 • Rehash all the data into the new table
 ▪ Typical value for λ_0 is 0.75

• As before, operations *usually* take time $O(1)$
 ▪ But sometimes we copy the whole table
Analysis of Table Doubling

- Suppose we reach a state with n items in a table of size m and we have just completed a table doubling.

<table>
<thead>
<tr>
<th>Copying Work</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Everything has just been copied</td>
<td>n inserts</td>
</tr>
<tr>
<td>Half were copied previously</td>
<td>$n/2$ inserts</td>
</tr>
<tr>
<td>Half of those were copied previously</td>
<td>$n/4$ inserts</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>Total work</td>
<td>$n + n/2 + n/4 + ... = 2n$</td>
</tr>
</tbody>
</table>
Analysis of Table Doubling, Cont’d

• Total number of insert operations needed to reach current table = copying work + initial insertions of items = $2n + n = 3n$ inserts

• Each insert takes expected time $O(\lambda_0)$ or $O(1)$, so total expected time to build entire table is $O(n)$

• Thus, expected time per operation is $O(1)$

• Disadvantages of table doubling:
 ▪ Worst-case insertion time of $O(n)$ is definitely achieved (but rarely)
 ▪ Thus, not appropriate for time critical operations
Java Hash Functions

- Most Java classes implement the method `int hashCode()`.

- Java's `HashMap` class uses $h(X) = X$.hashCode() mod m

- $h(X)$ in detail:
  ```java
  int hash = X.hashCode();
  int index =
    (hash & 0x7FFFFFFF) % m;
  ```

- What `hashCode()` returns:
 - Integer:
 - uses the int value
 - Float:
 - converts to a bit representation and treats it as an int
 - Short Strings:
 - 37*previous + value of next character
 - Long Strings:
 - sample of 8 characters;
 - 39 * previous + next value
hashCode() Requirements

• Contract for `hashCode()` method:
 ▪ Whenever it is invoked in the same object, it must return the same result
 ▪ Two objects that are equal (in the sense of `.equals(...)`) must have the same hash code
 ▪ Two objects that are not equal should return different hash codes, but are not required to do so (i.e., collisions are allowed)
Hashtables in Java

• `java.util.HashMap`
• `java.util.HashSet`
• `java.util.Hashtable`

• Use chaining

• Initial (default) size = 101

• Load factor = $\lambda_0 = 0.75$

• Uses table doubling
 \[2 \times \text{previous} + 1 \]

• A node in each chain looks like:

<table>
<thead>
<tr>
<th>hashCode</th>
<th>key</th>
<th>value</th>
<th>next</th>
</tr>
</thead>
</table>

 original hashCode (before mod m) – allows faster rehashing and (possibly) faster key comparison
Linear & Quadratic Probing

• These are techniques in which all data is stored directly within the hash table array

• Linear Probing
 ▪ Probe at \(h(X) \), then at
 ◆ \(h(X) + 1 \)
 ◆ \(h(X) + 2 \)
 ◆ …
 ◆ \(h(X) + i \)
 ▪ Leads to primary clustering
 ◆ Long sequences of filled cells

• Quadratic Probing
 ▪ Similar to Linear Probing in that data is stored within the table
 ▪ Probe at \(h(X) \), then at
 ◆ \(h(X) + 1 \)
 ◆ \(h(X) + 4 \)
 ◆ \(h(X) + 9 \)
 ◆ …
 ◆ \(h(X) + i^2 \)
 ▪ Works well when
 ◆ \(\lambda < 0.5 \)
 ◆ table size is prime
Universal Hashing

• Choose a hash function at random from a large parameterized family of hash functions (e.g., $h(x) = ax + b$, where a and b are chosen at random)

• With high probability, it will be just as good as any custom-designed hash function you can come up with
hashCode() and equals()

• We mentioned that the hash codes of two equal objects must be equal — this is necessary for hashtable-based data structures such as HashMap and HashSet to work correctly.

• In Java, this means if you override Object.equals(), you had better also override Object.hashCode().

• But how???
class Identifier {
 String name;
 String type;

 public boolean equals(Object obj) {
 if (obj == null) return false;
 Identifier id;
 try {
 id = (Identifier)obj;
 } catch (ClassCastException cce) {
 return false;
 }
 return name.equals(id.name) && type.equals(id.type);
 }
}
hashCode() and equals()

```java
class Identifier {
    String name;
    String type;

    public boolean equals(Object obj) {
        if (obj == null) return false;
        Identifier id;
        try {
            id = (Identifier)obj;
        } catch (ClassCastException cce) {
            return false;
        }
        return name.equals(id.name) && type.equals(id.type);
    }

    public int hashCode() {
        return 37 * name.hashCode() + 113 * type.hashCode() + 42;
    }
}
```
hashCode() and equals()

class TreeNode {
 TreeNode left, right;
 String datum;

 public boolean equals(Object obj) {
 if (obj == null || !(obj instanceof TreeNode)) return false;
 TreeNode t = (TreeNode)obj;
 boolean lEq = (left != null)?
 left.equals(t.left) : t.left == null;
 boolean rEq = (right != null)?
 right.equals(t.right) : t.right == null;
 return datum.equals(t.datum) && lEq && rEq;
 }
}
hashCode() and equals()

class TreeNode {
 TreeNode left, right;
 String datum;

 public boolean equals(Object obj) {
 if (obj == null || !(obj instanceof TreeNode)) return false;
 TreeNode t = (TreeNode)obj;
 boolean lEq = (left != null)?
 left.equals(t.left) : t.left == null;
 boolean rEq = (right != null)?
 right.equals(t.right) : t.right == null;
 return datum.equals(t.datum) && lEq && rEq;
 }

 public int hashCode() {
 int lHC = (left != null)? left.hashCode() : 298;
 int rHC = (right != null)? right.hashCode() : 377;
 return 37 * datum.hashCode() + 611 * lHC - 43 * rHC;
 }
}
Dictionary Implementations

• Ordered Array
 ▪ Better than unordered array because binary search can be used

• Unordered Linked List
 ▪ Ordering doesn’t help

• Hashtables
 ▪ $O(1)$ expected time for Dictionary operations