Searching, Sorting, and Asymptotic Complexity

Lecture 11
CS2110 – Fall 2011
Prelim Tonight!
Announcements

• Prelim 1
 ▪ Tonight, October 4, 7:30-9pm
 ▪ Phillips 101 (Abrams–Murphy)
 Upson B17 (Nambiar–Zhu)
 ▪ Topics
 ✷ all material up to (but not including) searching and sorting (this week’s topics)
 ✷ including interfaces & inheritance

• A3 due Friday, Oct 7, 11:59pm

• Old exams are available on the course website
What Makes a Good Algorithm?

• Suppose you have two possible algorithms or data structures that basically do the same thing; which is better?

• Well…what do we mean by better?
 ▪ Faster?
 ▪ Less space?
 ▪ Easier to code?
 ▪ Easier to maintain?
 ▪ Required for homework?

• How do we measure time and space for an algorithm?
Sample Problem: Searching

- Determine if a *sorted* array of integers contains a given integer
- First solution: Linear Search (check each element)

```java
static boolean find(int[] a, int item) {
    for (int i = 0; i < a.length; i++) {
        if (a[i] == item) return true;
    }
    return false;
}
```

```java
static boolean find(int[] a, int item) {
    for (int x : a) {
        if (x == item) return true;
    }
    return false;
}
```
Sample Problem: Searching

Second solution:
Binary Search

```java
static boolean find (int[] a, int item) {
    int low = 0;
    int high = a.length - 1;
    while (low <= high) {
        int mid = (low + high)/2;
        if (a[mid] < item)
            low = mid + 1;
        else if (a[mid] > item)
            high = mid - 1;
        else return true;
    }
    return false;
}
```
Linear Search vs Binary Search

• Which one is better?
 ▪ Linear Search is easier to program
 ▪ But Binary Search is faster… isn’t it?

• How do we measure to show that one is faster than the other?
 ▪ Experiment?
 ▪ Proof?
 ▪ Which inputs do we use?

• Simplifying assumption #1: Use the size of the input rather than the input itself
 ▪ For our sample search problem, the input size is n+1 where n is the array size

• Simplifying assumption #2: Count the number of “basic steps” rather than computing exact times
One Basic Step ≈ One Time Unit

• Basic step:
 ▪ input or output of a scalar value
 ▪ accessing the value of a scalar variable, array element, or field of an object
 ▪ assignment to a variable, array element, or field of an object
 ▪ a single arithmetic or logical operation
 ▪ method invocation (not counting argument evaluation and execution of the method body)

• For a conditional, count number of basic steps on the branch that is executed

• For a loop, count number of basic steps in loop body times the number of iterations

• For a method, count number of basic steps in method body (including steps needed to prepare the stack frame)
Runtime vs Number of Basic Steps

• But is this cheating?
 ▪ The runtime is not the same as the number of basic steps
 ▪ Time per basic step varies depending on computer, on compiler, on details of code…

• Well…yes, in a way
 ▪ But the number of basic steps is proportional to the actual runtime

• Simplifying assumption #3: Ignore multiplicative constants
Runtime vs Number of Basic Steps

• Q: Which is better?
 - n or n^2?
 - $100n$ or n^2?
 - $10,000n$ or n^2?

• A: As n gets large, multiplicative constants become less important – no matter what the (fixed) constant, linear is always eventually better than quadratic for large enough values of n
Big-O Notation

• We write $f(n)$ is $O(g(n))$ and say $f(n)$ is order of $g(n)$ if for all sufficiently large n, $f(n)$ is bounded by a constant times $g(n)$

• Roughly, $f(n)$ is $O(g(n))$ means that $f(n)$ grows like $g(n)$ or slower, to within a constant factor

• "Constant" means fixed and independent of n

Formal definition: $f(n)$ is $O(g(n))$ if there exist constants c and N such that for all $n \geq N$, $f(n) \leq c \cdot g(n)$

“For all sufficiently large n, $f(n)$ is bounded by a constant times $g(n)$”

Example:
• $n^2 + n \leq 2n^2$ for $n \geq 1$
• So $n^2 + n$ is $O(n^2)$ with $c=2$ and $N=1$
To prove that $f(n)$ is $O(g(n))$:

- Find an N and c such that $f(n) \leq c \cdot g(n)$ for all $n \geq N$
- We call the pair (c, N) a *witness pair* for the fact that $f(n)$ is $O(g(n))$
Big-O Examples

• Claim: $100n + \log n$ is $O(n)$

• We know $\log n \leq n$ for $n \geq 1$

• So $100n + \log n \leq 101n$
 for $n \geq 1$

• So by definition,
 $100n + \log n$ is $O(n)$
 for $c = 101$ and $N = 1$

Claim: $\log_B n$ is $O(\log_A n)$
 since $\log_B n$ is $(\log_B A)(\log_A n)$

Question: Which grows faster:
 \sqrt{n} or $\log n$?
Big-O Examples

• Let \(f(n) = 3n^2 + 6n - 7 \)
 - \(f(n) \) is \(O(n^2) \)
 - (it is also \(O(n^3), O(n^4) \), ...)

• \(g(n) = 4n \log n + 34n - 89 \)
 - \(g(n) \) is \(O(n \log n) \)
 - (it is also \(O(n^2), O(n^3), \ldots \))

• \(h(n) = 20 \cdot 2^n + 40n \)
 - \(h(n) \) is \(O(2^n) \)

• \(a(n) = 34 \)
 - \(a(n) \) is \(O(1) \)

• For polynomial expressions, only the leading term matters
Problem-Size Examples

• Suppose we have a computing device that can execute 1000 operations per second; how large a problem can we solve?

<table>
<thead>
<tr>
<th></th>
<th>1 second</th>
<th>1 minute</th>
<th>1 hour</th>
</tr>
</thead>
<tbody>
<tr>
<td>n</td>
<td>1000</td>
<td>60,000</td>
<td>3,600,000</td>
</tr>
<tr>
<td>n log n</td>
<td>140</td>
<td>4893</td>
<td>200,000</td>
</tr>
<tr>
<td>n^2</td>
<td>31</td>
<td>244</td>
<td>1897</td>
</tr>
<tr>
<td>3n^2</td>
<td>18</td>
<td>144</td>
<td>1096</td>
</tr>
<tr>
<td>n^3</td>
<td>10</td>
<td>39</td>
<td>153</td>
</tr>
<tr>
<td>2^n</td>
<td>9</td>
<td>15</td>
<td>21</td>
</tr>
</tbody>
</table>
Commonly Seen Time Bounds

<table>
<thead>
<tr>
<th>O(expression)</th>
<th>Description</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>O(1)</td>
<td>constant</td>
<td>negligible</td>
</tr>
<tr>
<td>O(log n)</td>
<td>logarithmic</td>
<td>excellent*</td>
</tr>
<tr>
<td>O(n)</td>
<td>linear</td>
<td>very good*</td>
</tr>
<tr>
<td>O(n log n)</td>
<td>n log n</td>
<td>good*</td>
</tr>
<tr>
<td>O(n^2)</td>
<td>quadratic</td>
<td>maybe OK*</td>
</tr>
<tr>
<td>O(n^3)</td>
<td>cubic</td>
<td>maybe too slow*</td>
</tr>
<tr>
<td>O(2^n)</td>
<td>exponential</td>
<td>way too slow*</td>
</tr>
</tbody>
</table>

*depending on n, of course
Worst-Case/Expected-Case

• We can’t possibly determine time bounds for all possible inputs of size n

• Simplifying assumption #4: Determine number of steps for either
 ▪ worst-case or
 ▪ expected-case

• Worst-case
 ▪ Determine how much time is needed for the worst possible input of size n

• Expected-case
 ▪ Determine how much time is needed on average over all inputs of size n
Our Simplifying Assumptions

• Use the size of the input rather than the input itself – \(n \)
• Count the number of “basic steps” rather than computing exact times
• Multiplicative constants and small inputs ignored (big-O)
• Determine number of steps for either
 ▪ worst-case
 ▪ expected-case
• These assumptions allow us to analyze algorithms effectively
Worst-Case Analysis of Searching

Linear Search

```java
static boolean find (int[] a, int item) {
    for (int i = 0; i < a.length; i++) {
        if (a[i] == item) return true;
    }
    return false;
}

worst-case time = O(n)
```

Binary Search

```java
static boolean find (int[] a, int item) {
    int low = 0;
    int high = a.length - 1;
    while (low <= high) {
        int mid = (low + high)/2;
        if (a[mid] < item)
            low = mid + 1;
        else if (a[mid] > item)
            high = mid - 1;
        else return true;
    }
    return false;
}

worst-case time = O(log n)
```
Comparison of Algorithms

Linear vs. Binary Search

Max Number of Comparisons

Number of Items in Array

- Linear Search
- Binary Search
Comparison of Algorithms

Linear vs. Binary Search

- **Y-axis**: Max Number of Comparisons
- **X-axis**: Number of Items in Array

Legend:
- □ Linear Search
- ▲ Binary Search
Comparison of Algorithms

![Graph comparing Linear vs. Binary Search]

- **Linear Search**
- **Binary Search**

The graph illustrates the comparison between Linear Search and Binary Search based on the number of items in the array and the maximum number of comparisons. Binary Search significantly outperforms Linear Search as the number of items increases.
Analysis of Matrix Multiplication

• By convention, matrix problems are measured in terms of \(n \), the number of rows and columns
 ▪ Note that the input size is really \(2n^2 \), not \(n \)
 ▪ Worst-case time is \(O(n^3) \)
 ▪ Expected-case time is also \(O(n^3) \)

```java
for (i = 0; i < n; i++) {
    for (j = 0; j < n; j++) {
        C[i][j] = 0;
        for (k = 0; k < n; k++)
            C[i][j] += A[i][k]*B[k][j];
    }
}
```
Remarks

• Once you get the hang of this, you can quickly focus in on what is relevant for determining asymptotic complexity
 ▪ For example, you can usually ignore everything that is not in the innermost loop. Why?

• Main difficulty:
 ▪ Determining runtime for recursive programs
Why Bother with Runtime Analysis?

• Computers are so fast these days that we can do whatever we want using just simple algorithms and data structures, right?

• Well…not really – data-structure/algorithm improvements can be a very big win

• Scenario:
 - A runs in n^2 msec
 - A’ runs in $n^2/10$ msec
 - B runs in $10n \log n$ msec

• Problem of size $n=10^3$
 - A: 10^3 sec \approx 17 minutes
 - A’: 10^2 sec \approx 1.7 minutes
 - B: 10^2 sec \approx 1.7 minutes

• Problem of size $n=10^6$
 - A: 10^9 sec \approx 30 years
 - A’: 10^8 sec \approx 3 years
 - B: $2 \cdot 10^5$ sec \approx 2 days

1 day = 86,400 sec $\approx 10^5$ sec
1,000 days \approx 3 years
Algorithms for the Human Genome

- Human genome
 = 3.5 billion nucleotides
 ≈ 1GB

- @1 base-pair instruction/μsec
 - \(n^2 \) → 388445 years
 - \(n \log n \) → 30.824 hours
 - \(n \) → 1 hour
Limitations of Runtime Analysis

• Big-O can hide a very large constant
 ▪ Example: selection
 ▪ Example: small problems

• The specific problem you want to solve may not be the worst case
 ▪ Example: Simplex method for linear programming

• Your program may not be run often enough to make analysis worthwhile
 ▪ Example: run-once vs every day

• You may be analyzing and improving the wrong part of the program
 ▪ Very common situation
 ▪ Should use profiling tools
Summary

• Asymptotic complexity
 ▪ Used to measure of time (or space) required by an algorithm
 ▪ Measure of the algorithm, not the problem

• Searching a sorted array
 ▪ Linear search: $O(n)$ worst-case time
 ▪ Binary search: $O(\log n)$ worst-case time

• Matrix operations:
 ▪ $n = \text{number-of-rows} = \text{number-of-columns}$
 ▪ Matrix-vector product: $O(n^2)$ worst-case time
 ▪ Matrix-matrix multiplication: $O(n^3)$ worst-case time

• More later with sorting and graph algorithms