Announcements

- Prelim 1
 - Tonight, October 4, 7:30-9pm
 - Phillips 101 (Abrams–Murphy)
 - Upson B17 (Nambiar–Zhu)
 - Topics
 - all material up to (but not including) searching and sorting (this week’s topics)
 - including interfaces & inheritance
- A3 due Friday, Oct 7, 11:59pm
- Old exams are available on the course website

What Makes a Good Algorithm?

- Suppose you have two possible algorithms or data structures that basically do the same thing; which is better?
- Well... what do we mean by better?
 - Faster?
 - Less space?
 - Easier to code?
 - Easier to maintain?
 - Required for homework?
- How do we measure time and space for an algorithm?

Sample Problem: Searching

- Determine if a sorted array of integers contains a given integer
- First solution: Linear Search (check each element)

```java
static boolean find(int[] a, int item) {
    for (int i = 0; i < a.length; i++) {
        if (a[i] == item) return true;
    }
    return false;
}
```

- Second solution: Binary Search

```java
static boolean find(int[] a, int item) {
    int low = 0;
    int high = a.length - 1;
    while (low <= high) {
        int mid = (low + high)/2;
        if (a[mid] < item)
            low = mid + 1;
        else if (a[mid] > item)
            high = mid - 1;
        else return true;
    }
    return false;
}
```
Linear Search vs Binary Search

• Which one is better?
 • Linear Search is easier to program
 • But Binary Search is faster… isn’t it?

• How do we measure to show that one is faster than the other?
 • Experiment?
 • Proof?
 • Which inputs do we use?

Simplifying assumption #1: Use the size of the input rather than the input itself
For our sample search problem, the input size is n+1 where n is the array size

Simplifying assumption #2: Count the number of “basic steps” rather than computing exact times

Simplifying assumption #3: Ignore multiplicative constants

Runtime vs Number of Basic Steps

• But is this cheating?
 • The runtime is not the same as the number of basic steps
 • Time per basic step varies depending on computer, on compiler, on details of code…

• Well…yes, in a way
 • But the number of basic steps is proportional to the actual runtime

Basic step:
 • input or output of a scalar value
 • accessing the value of a scalar variable, array element, or field of an object
 • assignment to a variable, array element, or field of an object
 • a single arithmetic or logical operation
 • method invocation (not counting argument evaluation and execution of the method body)

For a conditional, count number of basic steps on the branch that is executed
For a loop, count number of basic steps in loop body times the number of iterations
For a method, count number of basic steps in method body (including steps needed to prepare the stack frame)

Big-O Notation

• We write f(n) is O(g(n)) and say f(n) is order of g(n) if for all sufficiently large n, f(n) is bounded by a constant times g(n)

• Roughly, f(n) is O(g(n)) means that f(n) grows like g(n) or slower, to within a constant factor

• “Constant” means fixed and independent of n

Formal definition: f(n) is O(g(n)) if there exist constants c and N such that for all n ≥ N, f(n) ≤ c·g(n)
“For all sufficiently large n, f(n) is bounded by a constant times g(n)"?

Example:
 • n^2 + n = 2n^2 for n ≥ 1
 • So n^2 + n is O(n^2) with c=2 and N=1

Q: Which is better?
 • n or n^2 ?
 • 100n or n^2 ?
 • 10,000n or n^2 ?

A: As n gets large, multiplicative constants become less important — no matter what the (fixed) constant, linear is always eventually better than quadratic for large enough values of n

To prove that f(n) is O(g(n)):
 • Find an N and c such that f(n) ≤ c·g(n) for all n ≥ N
 • We call the pair (c, N) a witness pair for the fact that f(n) is O(g(n))
Big-O Examples

• Claim: 100 \(n + \log n \) is \(O(n) \)
• We know \(\log n \leq n \) for \(n \geq 1 \)
• So \(100 n + \log n \leq 101 n \) for \(n \geq 1 \)
• So by definition, \(100 n + \log n \) is \(O(n) \) for \(c = 101 \) and \(N = 1 \)

Claim: \(\log_B n \) is \(O(\log_A n) \) since \(\log_B n = (\log_B A)(\log_A n) \)

Question: Which grows faster: \(\sqrt{n} \) or \(\log n \)?

Big-O Examples

• Let \(f(n) = 3n^2 + 6n - 7 \)
 • \(f(n) \) is \(O(n^2) \)
 • It is also \(O(n^3), O(n^4), \ldots \) \(O(n^{\log_2 n}) \)
• \(g(n) = 4n \log n + 34n - 89 \)
 • \(g(n) \) is \(O(n \log n) \)
 • It is also \(O(n^2), O(n^3), \ldots \) \(O(n^{\log_2 n}) \)
• \(h(n) = 20 \cdot 2^n + 40n \)
 • \(h(n) \) is \(O(2^n) \)
• \(a(n) = 34 \)
 • \(a(n) \) is \(O(1) \)

For polynomial expressions, only the leading term matters

Problem-Size Examples

• Suppose we have a computing device that can execute 1000 operations per second; how large a problem can we solve?

<table>
<thead>
<tr>
<th></th>
<th>1 second</th>
<th>1 minute</th>
<th>1 hour</th>
</tr>
</thead>
<tbody>
<tr>
<td>(n)</td>
<td>1000</td>
<td>60,000</td>
<td>3,600,000</td>
</tr>
<tr>
<td>(n \log n)</td>
<td>140</td>
<td>4893</td>
<td>230,000</td>
</tr>
<tr>
<td>(n^2)</td>
<td>31</td>
<td>244</td>
<td>1897</td>
</tr>
<tr>
<td>(3^n)</td>
<td>18</td>
<td>144</td>
<td>1096</td>
</tr>
<tr>
<td>(n^2)</td>
<td>10</td>
<td>39</td>
<td>153</td>
</tr>
<tr>
<td>(2^n)</td>
<td>9</td>
<td>15</td>
<td>21</td>
</tr>
</tbody>
</table>

Commonly Seen Time Bounds

<table>
<thead>
<tr>
<th>(O(1))</th>
<th>(O(\log n))</th>
<th>(O(n))</th>
<th>(O(n \log n))</th>
<th>(O(n^2))</th>
<th>(O(n^3))</th>
<th>(O(2^n))</th>
</tr>
</thead>
<tbody>
<tr>
<td>constant</td>
<td>logarithmic</td>
<td>linear</td>
<td>(\log n)</td>
<td>quadratic</td>
<td>cubic</td>
<td>exponential</td>
</tr>
<tr>
<td>negligible</td>
<td>excellent*</td>
<td>very good*</td>
<td>good*</td>
<td>maybe OK*</td>
<td>maybe too slow*</td>
<td>way too slow*</td>
</tr>
</tbody>
</table>

*depending on \(n \), of course

Worst-Case/Expected-Case

• We can’t possibly determine time bounds for all possible inputs of size \(n \)
• Simplifying assumption #4: Determine number of steps for either
 • worst-case or
 • expected-case
• Worst-case
 • Determine how much time is needed for the worst possible input of size \(n \)
• Expected-case
 • Determine how much time is needed on average over all inputs of size \(n \)

Our Simplifying Assumptions

• Use the size of the input rather than the input itself – \(n \)
• Count the number of “basic steps” rather than computing exact times
• Multiplicative constants and small inputs ignored (big-O)
• Determine number of steps for either
 • worst-case
 • expected-case
• These assumptions allow us to analyze algorithms effectively
Worst-Case Analysis of Searching

Linear Search
```java
static boolean find (int[] a, int item) {
    for (int i = 0; i < a.length; i++) {
        if (a[i] == item) return true;
    }
    return false;
}
worst-case time = O(n)
```

Binary Search
```java
static boolean find (int[] a, int item) {
    int low = 0;
    int high = a.length - 1;
    while (low <= high) {
        int mid = (low + high)/2;
        if (a[mid] < item) 
            low = mid+1;
        else if (a[mid] > item)
            high = mid - 1;
        else return true;
    }
    return false;
}
worst-case time = O(log n)
```

Comparison of Algorithms

![Linear vs. Binary Search](image)

Analysis of Matrix Multiplication

- By convention, matrix problems are measured in terms of \(n \), the number of rows and columns
 - Note that the input size is really \(2n^2 \), not \(n \)
 - Worst-case time is \(O(n^3) \)
 - Expected-case time is also \(O(n^3) \)

```java
for (i = 0; i < n; i++) {
    for (j = 0; j < n; j++) {
        for (k = 0; k < n; k++)
            C[i][j] += A[i][k]*B[k][j];
    }
}
```

Remarks

- Once you get the hang of this, you can quickly focus in on what is relevant for determining asymptotic complexity
 - For example, you can usually ignore everything that is not in the innermost loop. Why?
- Main difficulty:
 - Determining runtime for recursive programs
Why Bother with Runtime Analysis?

- Computers are so fast these days that we can do whatever we want using just simple algorithms and data structures, right?
- Well... not really – data-structure/algorithm improvements can be a very big win
- Scenario:
 - A runs in n^2 msec
 - A’ runs in $n^2/10$ msec
 - B runs in $10n \log n$ msec
- Problem of size $n=10^3$
 - A: 10^3 sec ≈ 17 minutes
 - A’: 10^2 sec ≈ 1.7 minutes
 - B: $2 \cdot 10^2$ sec ≈ 2 days
 1 day $= 86,400$ sec $\approx 10^5$ sec
 1,000 days ≈ 3 years
- Problem of size $n=10^6$
 - A: 10^9 sec ≈ 30 years
 - A’: 10^8 sec ≈ 3 years
 - B: $2 \cdot 10^5$ sec ≈ 2 days

Algorithms for the Human Genome

- Human genome
 - 3.5 billion nucleotides
 - 1 GB
- $@1$ base-pair instruction/µsec
 - n^2 \rightarrow $388,445$ years
 - $n \log n$ \rightarrow 30.824 hours
 - n \rightarrow 1 hour

Limitations of Runtime Analysis

- Big-O can hide a very large constant
 - Example: selection
- The specific problem you want to solve may not be the worst case
 - Example: Simplex method for linear programming
- Your program may not be run often enough to make analysis worthwhile
 - Example: run-once vs every day
- You may be analyzing and improving the wrong part of the program
 - Very common situation
 - Should use profiling tools

Summary

- Asymptotic complexity
 - Used to measure of time (or space) required by an algorithm
 - Measure of the algorithm, not the problem
- Searching a sorted array
 - Linear search: $O(n)$ worst-case time
 - Binary search: $O(\log n)$ worst-case time
- Matrix operations:
 - $n = number-of-rows = number-of-columns$
 - Matrix-vector product: $O(n^2)$ worst-case time
 - Matrix-matrix multiplication: $O(n^3)$ worst-case time
- More later with sorting and graph algorithms