Recursion Overview

- Recursion is a powerful technique for specifying functions, sets, and programs
- Example recursively-defined functions and programs
 - factorial
 - combinations
 - exponentiation (raising to an integer power)
- Example recursively-defined sets
 - grammars
 - expressions
 - data structures (lists, trees, ...)

The Factorial Function \((n!)\)

- Define \(n! = n \cdot (n - 1) \cdot (n - 2) \cdot \ldots \cdot 3 \cdot 2 \cdot 1\) read: “\(n\) factorial”
- E.g., \(3! = 3 \cdot 2 \cdot 1 = 6\)
- By convention, \(0! = 1\)
- The function \(\text{int} \rightarrow \text{int}\) that gives \(n!\) on input \(n\) is called the factorial function
- \(n!\) is the number of permutations of \(n\) distinct objects
 - There is just one permutation of one object. \(1! = 1\)
 - There are two permutations of two objects: \(2! = 2\)
 \[1 2\]
 \[2 1\]
 - There are six permutations of three objects: \(3! = 6\)
 \[1 2 3\]
 \[1 3 2\]
 \[2 1 3\]
 \[2 3 1\]
 \[3 1 2\]
 \[3 2 1\]
- If \(n > 0\), \(n! = n \cdot (n - 1)!\)

A Recursive Program

```c
static int fact(int n) {
    if (n == 0) return 1;
    else return n*fact(n-1);
}
```

Execution of \(\text{fact}(4)\)

\[
\begin{align*}
\text{fact}(4) & \rightarrow 24 \\
\text{fact}(3) & \rightarrow 6 \\
\text{fact}(2) & \rightarrow 2 \\
\text{fact}(1) & \rightarrow 1 \\
\text{fact}(0) & \rightarrow 1
\end{align*}
\]
General Approach to Writing Recursive Functions

1. Try to find a parameter, say n, such that the solution for n can be obtained by combining solutions to the same problem using smaller values of n (e.g., (n−1)!)

2. Find base case(s) — small values of n for which you can just write down the solution (e.g., 0! = 1)

3. Verify that, for any valid value of n, applying the reduction of step 1 repeatedly will ultimately hit one of the base cases

Recursive Functions

The Fibonacci Function

- **Mathematical definition:**
 - fib(0) = 0
 - fib(1) = 1
 - fib(n) = fib(n−1) + fib(n−2), n ≥ 2

- **Fibonacci sequence:** 0, 1, 1, 2, 3, 5, 8, 13, …

```c
static int fib(int n) {
    if (n == 0) return 0;
    else if (n == 1) return 1;
    else return fib(n-1) + fib(n-2);
}
```

- **Fibonacci (Leonardo Pisano) 1170−1240?**
- **Statue in Pisa, Italy Giovanni Paganucci 1863**

Recursive Execution

```c
static int fib(int n) {
    if (n == 0) return 0;
    else if (n == 1) return 1;
    else return fib(n-1) + fib(n-2);
}
```

Execution of fib(4):

- fib(4)
- fib(3)
- fib(2)
- fib(1)
- fib(0)

Combinations (a.k.a. Binomial Coefficients)

- **How many ways can you choose r items from a set of n distinct elements?** \(\binom{n}{r} \) ‘n choose r’

\[
\binom{n}{r} = \frac{n!}{r!(n-r)!}
\]

- **2-element subsets containing A: [A,B], [A,C], [A,D], [A,E]** \(\binom{4}{2} \)
- **2-element subsets not containing A: [B,C],[B,D],[B,E],[C,D],[C,E],[D,E]** \(\binom{4}{2} \)

Therefore, \(\binom{5}{2} = \binom{4}{2} + \binom{4}{2} \)

- **Binomial Coefficients**

\[
(x + y)^n = \binom{n}{0}x^n + \binom{n}{1}x^{n-1}y + \binom{n}{2}x^{n-2}y^2 + \cdots + \binom{n}{n}y^n
\]

\[
= \sum_{i=0}^{n} \binom{n}{i}x^{n-i}y^i
\]

Combinations

\[
\binom{n}{r} = \binom{n-1}{r} + \binom{n-1}{r-1}, \quad n > r > 0
\]

\[
\binom{n}{0} = 1, \quad \binom{n}{n} = 1
\]

Can also show that \(\binom{n}{r} = \frac{n!}{r!(n-r)!} \)

\[
\begin{array}{c|c|c|c|c}
\binom{3}{0} & \binom{3}{1} & \binom{3}{2} & \binom{3}{3} \\
\hline
1 & 3 & 3 & 1
\end{array}
\]

\[
\begin{array}{c|c|c|c|c|
\binom{4}{0} & \binom{4}{1} & \binom{4}{2} & \binom{4}{3} & \binom{4}{4} \\
\hline
1 & 4 & 6 & 4 & 1
\end{array}
\]
Combinations Have Two Base Cases

\[
\begin{align*}
{n\choose r} &= \binom{n-1}{r} + \binom{n-1}{r-1}, \quad n > r > 0 \\
{n\choose r} &= 1 \\
{n\choose 0} &= 1
\end{align*}
\]

- Coming up with right base cases can be tricky!
- General idea:
 - Determine argument values for which recursive case does not apply
 - Introduce a base case for each one of these

Recursive Program for Combinations

\[
\begin{align*}
{n\choose r} &= \binom{n-1}{r} + \binom{n-1}{r-1}, \quad n > r > 0 \\
{n\choose n} &= 1 \\
{n\choose 0} &= 1
\end{align*}
\]

\[
\text{static int combs(int n, int r) \{ //assume n>=r>=0}
\begin{align*}
\text{if (r == 0 || r == n) return 1;} \\
\text{else return combs(n-1,r) + combs(n-1,r-1);}
\end{align*}
\]

Positive Integer Powers

- \(a^n = a \cdot a \cdot a \cdots a\) (n times)

- Alternate description:
 - \(a^0 = 1\)
 - \(a^{n+1} = a \cdot a^n\)

\[
\text{static int power(int a, int n) \{ if (n == 0) return 1;}
\begin{align*}
\text{else return a*power(a,n-1);}
\end{align*}
\]

A Smarter Version

- Power computation:
 - \(a^0 = 1\)
 - If \(n\) is nonzero and even, \(a^n = (a^{n/2})^2\)
 - If \(n\) is odd, \(a^n = a \cdot (a^{n/2})^2\)
 - Java note: if \(x\) and \(y\) are integers, "/" returns the integer part of the quotient
 - Example:
 - \(a^5 = a \cdot (a^{5/2})^2 = a \cdot (a^{2})^2 = a \cdot ((a^{2/2})^2)^2 = a \cdot (a^{2})^2\)
 - Note: this requires 3 multiplications rather than 5!

- What if \(n\) were larger?
 - Savings would be more significant
 - This is much faster than the straightforward computation

\[
\text{static int power(int a, int n) \{ if (n == 0) return 1;}
\begin{align*}
\text{else return a*power(a,n-1);}
\end{align*}
\]

Smarter Version in Java

- \(n = 0; a^0 = 1\)
- \(n\) nonzero and even: \(a^n = (a^{n/2})^2\)
- \(n\) nonzero and odd: \(a^n = a \cdot (a^{n/2})^2\)

\[
\text{static int power(int a, int n) \{ if (n == 0) return 1;}
\begin{align*}
\text{int halfPower = power(a,n/2);}
\text{if (n%2 == 0) return halfPower*halfPower; return halfPower*halfPower*a;}
\end{align*}
\]

- The method has two parameters and a local variable
- Why aren’t these overwritten on recursive calls?

Implementation of Recursive Methods

- Key idea:
 - Use a stack to remember parameters and local variables across recursive calls
 - Each method invocation gets its own stack frame

- A stack frame contains storage for
 - Local variables of method
 - Parameters of method
 - Return info (return address and return value)
 - Perhaps other bookkeeping info
Stacks

- Like a stack of plates
- You can push data on top or pop data off the top in a LIFO (last-in-first-out) fashion
- A queue is similar, except it is FIFO (first-in-first-out)

Stack Frame

- A new stack frame is pushed with each recursive call
- The stack frame is popped when the method returns
 - Leaving a return value (if there is one) on top of the stack

Example: power(2, 5)

- At any point in execution, many invocations of power may be in existence
 - Many stack frames (all for power) may be in Stack
 - Thus there may be several different versions of the variables \(a \) and \(n \)
- How does processor know which location is relevant at a given point in the computation?

Answer:
- Frame Base Register
 - When a method is invoked, a frame is created for that method invocation, and FBR is set to point to that frame
 - When the invocation returns, FBR is restored to what it was before the invocation

How does machine know what value to restore in the FBR?
- This is part of the return info in the stack frame

Conclusion

- Recursion is a convenient and powerful way to define functions
- Problems that seem insurmountable can often be solved in a “divide-and-conquer” fashion:
 - Reduce a big problem to smaller problems of the same kind, solve the smaller problems
 - Recombine the solutions to smaller problems to form solution for big problem
- Important application (future lecture): parsing