
CS 2110 FINAL REVIEW
Johnathon Schultz

Fall 2010

Final Information

 Final

 Thursday, December 16th

 Barton Hall – West

 2:00 - 4:30

 How to Review:

 Review previous prelims (esp. this years!)

 Review previous finals

 Review lecture slides

 Review previous review slides

 Attend this session

Material

 In short, everything
ever

 Types

 Recursion

 Lists and Trees

 Big-O

 Induction

 Threads &
Concurrency

 ADTs:

 Stacks

 Queues

 Priority Queues

 Maps

 Sets

 Graph Algorithms:

 Prim’s

 Kruskal’s

 Dijkstra’s

For the prelim…

 Don’t spend your time memorizing Java APIs!

 If you want to use an ADT, it’s acceptable to write code
that looks reasonable, even if it’s not the exact Java
API. For example,

Queue<Integer> myQueue = new Queue<Integer>();

myQueue.enqueue(5);

…

int x = myQueue.dequeue();

 This is not correct Java (Queue is an interface! And
Java calls enqueue and dequeue “add” and “poll”)

 But it’s fine for the exam.

Inheritance

Inheritance

 Subclasses inherit fields & methods of superclass

 Overriding – subclass contains the same method as
superclass (same name, parameters, static/not)

 Shadowing – subclass contains the same field (instance
variable) as superclass (this is BAD)

 Casting – upcasting is always type-safe and OK

 Downcasting is bad – sometimes doesn’t work (hard to
predict)

 Java is single implementation inheritance and multiple
interface inheritance

Typing

 Suppose type B implements or extends type A

 B is a subtype of A; A is a supertype of B

 Each variable has a static type

 List<Integer> x; List<Integer> is the static type

 Note: List<SubtypeOfInteger> is not a subtype of
List<Integer>

 Can safely assign x a dynamic subtype of List<Integer>

 x = new ArrayList<Integer>;

 Static type can differ from dynamic type at runtime

 The dynamic type cannot be an interface

Typing examples

 B var = new C();

 Static type = B

 Static type is used when calling fields; i.e. var.x will call
the field x in class B

 NEVER CHANGES

 Dynamic type = C

 Used when calling methods; i.e. var.hello() will call the
method hello() in C (not the one in B!)

 Changed by: var = new B();

 Now, the dynamic type is B

 Casting: var = (B) var – does not change any type

Polymorphism

 Previous slide: “Used when calling methods; i.e.

var.hello() will call the method hello() in C (not the

one in B!)”

 This is called Polymorphism

 When a method is called on an object, the method

in the object’s dynamic type is the method that is

actually run!

 NOT the method in its static type, even if the

method is defined there.

The instanceof Operator

Code Effect

dog instanceof Dog true

dalmatian instanceof Dog true

dog instanceof Dalmatian false

dalmatian instanceof ShowDogInte
rface

true

dalmatian instanceof dog syntax error

! dalmatian instanceof Dog syntax error

! (dalmatian instanceof Dog) false

dog instanceOf Dalmatian syntax error

dalmatian instanceof "Dog" syntax error

dalmatian instanceof Class.forNa
me ("DogPackage.Dog")

syntax error

null instanceof String false

Recursion

Recursion

 To understand recursion, you must first understand recursion.

 A procedure or subroutine whose implementation references itself

 Examples

 Fibonacci: Fib(n) = Fib(n-1) + Fib(n-2)

 Factorial: n! = n * (n-1)!

 Grammar Parsing

 Must have one or more base cases and a recursive case

 You don’t need to know proofs by induction for Prelim 1

 If a problem asks you to write a recursive method, you must call that
method within itself

 You should know how to run through a recursive method and figure out its
output

 See Recursion.java

How to Write Recursive Methods

 Start with the base case

 Ask yourself, what am I doing when I’m done?

 That’s your base case

 Next, what is the simplest case that isn’t the base

case?

 Because of the nature of recursion, this case is exactly

like all the other cases

 For example, let’s write a LinkedList Reverser…

Reversing a LinkedList

Public void reverse(???){

}

Reversing a LinkedList

Public void reverse(Node curr){

 if(curr.next == null){

 head = curr;

 }

}

Reversing a LinkedList

Public void reverse(Node prev, Node curr){

 if(curr.next == null){

 head = curr;

 }

 else{

 reverse(curr, curr.next);

 }

 curr.next = prev;

}

Reversing a LinkedList

But wait! We forgot one thing!

What if the list is empty?

Time for a recursive helper function!

Reversing a Linked List

 Recursive helper functions are useful for edge

cases that don’t appear in the general recursion

public void reverse(){

 if(! isEmpty() && head.next != null)

 return reverse(null, head);

}

Reversing a LinkedList

public void reverse(){

 if(! isEmpty() && head.next != null)

 return reverse(null, head);

}

Public void reverse(Node prev, Node curr){

 if(curr.next == null){

 head = curr;

 }

 else{

 reverse(curr, curr.next);

 }

 curr.next = prev;

}

Grammars and Parsing

 Refer to the following grammar (ignore spaces). <S> is the start

symbol of the grammar. (Note that P → a | b is really two rules,

P → a and P → b)

 <S> → <exp>

 <exp> → <int> + <int> | <int> - <med_int> | <int> + <exp>

 <int> → <small_int> | <med_int> <large_int> |

 <small_int>.<large_int>

 <large_int> → 8 | 9

 <med_int> → 5 | 6 | 7

 <small_int> → 0 | 1 | 2 | 3 | 4

 Is “4 + 2.8 – 49” a valid sentence?

Grammars and Parsing

 Refer to the following grammar (ignore spaces). <S> is the start

symbol of the grammar. (Note that P → a | b is really two rules,

P → a and P → b)

 <S> → <exp>

 <exp> → <int> + <int> | <int> - <med_int> | <int> + <exp>

 <int> → <small_int> | <med_int> <large_int> |

 <small_int>.<large_int>

 <large_int> → 8 | 9

 <med_int> → 5 | 6 | 7

 <small_int> → 0 | 1 | 2 | 3 | 4

 Is “30 + 0 + 0.99” a valid sentence?

Grammars and Parsing

 Refer to the following grammar (ignore spaces). <S> is the start

symbol of the grammar. (Note that P → a | b is really two rules,

P → a and P → b)

 <S> → <exp>

 <exp> → <int> + <int> | <int> - <med_int> | <int> + <exp>

 <int> → <small_int> | <med_int> <large_int> |

 <small_int>.<large_int>

 <large_int> → 8 | 9

 <med_int> → 5 | 6 | 7

 <small_int> → 0 | 1 | 2 | 3 | 4

 Which rule makes the grammar infinite?

Recursive Descent Parsers

 Recursively parse the data by descending from the
top level into smaller and smaller chunks.

 Cannot handle all Grammars

 Ex:
 S → b

 S → Sa

 Grammar can be rewritten:
 S → b

 S → bA

 A→ a

 A → aA

Example

A := A B

 boolean A() {

 if (A()) {

 return B();

 }

 return false;

 }

Trees

trees

 Tree: recursive data
structure (similar to lists)

 Each cell may have zero
or more successors
(children)

 Each cell has exactly one
predecessor (parent)
except the root, which has
none

 All cells are reachable
from root

5

4

7 8 9

2

General tree

5

4

7 8

2

Binary tree

5

4

7 8

Not a tree

5

6

8

List-like tree

Tree terminology

 M is the root of this tree

 G is the root of the left subtree of M

 B, H, J, N, and S are leaves

 N is the left child of P; S is the right
child

 P is the parent of N

 M and G are ancestors of D

 P, N, and S are descendants of W

 Node J is at depth 2 (i.e., depth =
length of path from root)

 Node W is at height 2 (i.e., height =
length of longest path to a leaf)

 A tree is complete if it all the levels
are completely filled except for the
last

M

G W

P J D

N H B S

Binary search trees

 Also known as BSTs

 Children to the left are less than the current node

 Children to the right are greater than the current

node

Tree traversals

 Preorder
 Root node, Left Node, Right Node

 Postorder
 Left Node, Right Node, Root Node

 Inorder
 Left Node, Root Node, Right Node

 Breadth First
 First level, Second Level, Third Level, …

 Depth First
 Root, Child, Child, Child, …, Leaf, Up One, Child, Child, Leaf,

…

Preorder Traversal

 Pre(5)

 5, Pre(2), Pre(7)

 5, 2, 1, Pre(3), Pre(7)

 5, 2, 1, 3, 4, Pre(7)

 5, 2, 1, 3, 4, 7, 6, 9

Inorder Traversal

 In(5)

 In(2), 5, In(7)

 1, 2, In(3), 5, In(7)

 1, 2, 3, 4, 5, In(7)

 1, 2, 3, 4, 5, 6, 7, 9

Postorder Traversal

 Post(5)

 Post(2), Post(7), 5

 1, Post(3), 2, Post(7), 5

 1, 4, 3, 2, Post(7), 5

 1, 4, 3, 2, 6, 9, 7, 5

Breadth first and depth first

 Breadth First:

 5, Depth 1, Depth 2, Depth 3

 5, 2, 7, Depth 2, Depth 3

 5, 2, 7, 1, 3, 6, 9, Depth 3

 5, 2, 7, 1, 3, 6, 9, 4

 Depth First:

 5, 5.Left, 5.Right

 5, 2, 2.Left, 2.Right,
5.Right

 5, 2, 1, 2.Right, 5.Right

 5, 2, 1, 3, 3.Right, 5.Right

 5, 2, 1, 3, 4, 5.Right

Efficiency

Big O notation

 F is O(n) means F is on the order of n.

 Big O provides an upper bound for the number of

operations the function is performing, based on the size of its

input

 5n2 + log n + n – 40 is O(n2)

Notation Name Example

O(1) Constant Determining if a number is odd

O(log n) Logarithmic Finding an item in a sorted list or tree

O(n) Linear Finding an item in an unsorted list or tree.

O(n log n) Quasilinear Quicksort (best and average case), Merge sort

O(n2) Quadratic Bubble sort, Quicksort (worst case)

O(nc) Polynomial Maximum matching for bipartite graphs

O(cn) Exponential Travelling salesman advanced, K-SAT brute-force

O(nn) O(n!) Factorial Travelling salesman brute-force

Formal Definition

Let f(x) and g(x) be two functions defined on some subset
of the real numbers.

𝑓 𝑥 = 𝑂 𝑔 𝑥 𝑎𝑠 𝑥 → ∞

if and only if

𝑓 𝑥 ≤ 𝑀 𝑔 𝑥 for all 𝑥 > 𝑥0

M is some constant multiplier

X0 is a value of x above which this statement is always
true

Also…

 Big O – Upper Bound

 Big Omega – Lower Bound (Ω)

 Big Theta – Tight Upper and Lower Bound (Θ)

Big-O notation

 For the prelim, you should know…

 Worst case Big-O complexity for the algorithms we’ve
covered and for common implementations of ADT
operations

 Examples

 Mergesort is worst-case O(n log n)

 PriorityQueue insert using a heap is O(log n)

 Average case time complexity for some algorithms and
ADT operations, if it has been noted in class

 Examples

 Quicksort is average case O(n log n)

 HashMap insert is average case O(1)

Big-O notation

 For the prelim, you should know…

 How to estimate the Big-O worst case runtimes of basic

algorithms (written in Java or pseudocode)

 Count the operations

 Loops tend to multiply the loop body operations by the loop

counter

 Trees and divide-and-conquer algorithms tend to introduce

log(n) as a factor in the complexity

 Basic recursive algorithms, i.e., binary search or mergesort

Induction

Induction

 We are going to spell the problem out for you

 Trick is to take the information, write it down

correctly, know algebra

 You can get most of the points on an induction

question just by writing down:

 Base Cases

 Inductive Hypothesis

 Using the I.H.

Induction Form

 Base Case(s)

 Inductive Hypothesis

 Proof (n+1 case):

 Given (Definition) Statement = What you want to prove

 …

 Substitution using the I.H.

 …

 Statement you want to Prove

Example

Prove that for 𝑛 ≥ 1,
2 + 22 + 23 + 24 + ⋯ + 2𝑛 = 2𝑛+1 − 2

Let 𝑛 = 1. Then:
21 = 2 = 21+1 − 2 (Base Case)

Assume that the equation holds for all 𝑛
2 + 22 + 23 + ⋯ + 2𝑛 = 2 𝑛+1 − 2 (I.H.)

Example Cont.

2 + 21 + 22 + ⋯ + 2𝑛 + 2𝑛+1 = 2𝑛+2 − 2
2𝑛+1 − 2 + 2𝑛+1 = 2𝑛+2 − 2 (Via I.H.)
2 ⋅ 2𝑛+1 − 2 = 2𝑛+2 − 2
21 ⋅ 2𝑛+1 − 2 = 2𝑛+2 − 2
2𝑛+2 − 2 = 2𝑛+2 − 2 (Q.E.D.)

Reviewing Induction

 Look at previous exams

 Look at lecture notes from CS 2800: Discrete

Structures

 Even if you can’t figure out the algebra, you’ll get a

majority of the credit if you do what I told you

Threads & Concurrency

Threads and Concurrency

 What you need to know is very simple

 Threads allow for multiple paths of execution in the
code – parallel computing

 Do Not:

 Access one variable from multiple threads without
synchronization

 Operations you think are atomic are NOT

 Cause of most thread synchronization problems

 “i++” is actually three instructions:

 Read-Update-Write

Threads and Concurrency

 Do: Synchronize access to variables

 wait(), notify(), notifyAll()

 synchronized(Object){ } blocks

 Use thread-safe objects, for example:

 AtomicInteger

 BlockingQueue

 ConcurrentHashMap,

 ConcurrentSkipListMap (TreeMap).

Threads & Concurrency

 See the last question on last year’s final

 We’re not going make you write threaded code,

only talk about what is wrong or right with existing

code

Abstract Data Types

Abstract Data Types

 What do we mean by “abstract”?

 Defined in terms of operations that can be performed,

not as a concrete structure

 Example: Priority Queue is an ADT, Heap is a concrete data

structure

 For ADTs, we should know:

 Operations offered, and when to use them

 Big-O complexity of these operations for standard

implementations

ADTs: The Bag Interface
52

interface Bag<E> {

 void insert(E obj);

 E extract(); //extract some element

 boolean isEmpty();

 E peek(); // optional: return next

 element without removing

}

Examples: Queue, Stack, PriorityQueue

Queues

 First-In-First-Out (FIFO)

 Objects come out of a queue in the same order they
were inserted

 Linked List implementation

 insert(obj): O(1)

 Add object to tail of list

 Also called enqueue, add (Java)

 extract(): O(1)

 Remove object from head of list

 Also called dequeue, poll (Java)

53

Stacks

 Last-In-First-Out (LIFO)

 Objects come out of a queue in the opposite order they
were inserted

 Linked List implementation

 insert(obj): O(1)

 Add object to tail of list

 Also called push (Java)

 extract(): O(1)

 Remove object from head of list

 Also called pop (Java)

54

Priority Queues

 Objects come out of a Priority Queue according to their
priority

 Generalized

 By using different priorities, can implement Stacks or
Queues

 Heap implementation (as seen in lecture)

 insert(obj, priority): O(log n)
 insert object into heap with given priority

 Also called add (Java)

 extract(): O(log n)
 Remove and return top of heap (minimum priority element)

 Also called poll (Java)

55

Heaps

 Concrete Data Structure

 Balanced binary tree

 Obeys heap order

invariant:

Priority(child) ≥ Priority(parent)

 Operations

 insert(value, priority)

 extract()

• Put the new element at the end of the array

• If this violates heap order because it is smaller than

its parent, swap it with its parent

• Continue swapping it up until it finds its rightful

place

• The heap invariant is maintained!

Heap insert()
57

4

14 6

21 19 8 35

22 55 38 10 20

Heap insert()
58

4

14 6

21 19 8 35

22 55 38 10 20 5

Heap insert()
59

4

14 6

21

19

8 35

22 55 38 10 20

5

Heap insert()
60

4

14

6

21

19

8 35

22 55 38 10 20

5

Heap insert()
61

4

14

6

21

19

8 35

22 55 38 10 20

5

Heap insert()
62

• Time is O(log n), since the tree is balanced

– size of tree is exponential as a function of depth

– depth of tree is logarithmic as a function of size

insert()
63

• Remove the least element – it is at the root

• This leaves a hole at the root – fill it in with the last

element of the array

• If this violates heap order because the root element

is too big, swap it down with the smaller of its

children

• Continue swapping it down until it finds its rightful

place

• The heap invariant is maintained!

extract()
64

4

5 6

21 14 8 35

22 55 38 10 20 19

extract()
65

5 6

21 14 8 35

22 55 38 10 20 19

4

extract()
66

5 6

21 14 8 35

22 55 38 10 20 19

4

extract()
67

5 6

21 14 8 35

22 55 38 10 20

19 4

extract()
68

5

6

21 14 8 35

22 55 38 10 20

19

4

extract()
69

5

6

21

14

8 35

22 55 38 10 20

19

4

extract()
70

5

6

21

14

8 35

22 55 38 10 20

4

19

extract()
71

6

21

14

8 35

22 55 38 10 20

4 5

19

extract()
72

6

21

14

8 35

22 55 38 10 20

19

4 5

extract()
73

6

21

14

8 35

22 55 38 10

20

19

4 5

extract()
74

6

21

14

8 35

22 55 38 10

20

19

4 5

extract()
75

6

21

14 8

35

22 55 38 10

20 19

4 5

extract()
76

6

21

14 8

35

22 55 38

10

20

19

4 5

extract()
77

6

21

14 8

35

22 55 38

10 19

20

4 5

extract()
78

• Time is O(log n), since the tree is balanced

extract()
79

• Elements of the heap are stored in the array in

order, going across each level from left to right, top

to bottom

• The children of the node at array index n are found

at 2n + 1 and 2n + 2

• The parent of node n is found at (n – 1)/2

Store in an ArrayList or Vector
80

Sets

 ADT Set

 Operations:

void insert(Object element);

boolean contains(Object element);

void remove(Object element);

int size();

iteration

 No duplicates allowed

 Hash table implementation: O(1) insert and contains

 SortedSet tree implementation: O(log n) insert and
contains

81

A set makes no promises about ordering, but you can still iterate over it.

Dictionaries

 ADT Dictionary (aka Map)

 Operations:

 void insert(Object key, Object value);

 void update(Object key, Object value);

 Object find(Object key);

 void remove(Object key);

 boolean isEmpty();

 void clear();

 Think of: key = word; value = definition

 Where used:

 Symbol tables

 Wide use within other algorithms

82

A HashMap is a particular implementation of the Map interface

Dictionaries

 Hash table implementation:

 Use a hash function to compute hashes of keys

 Store values in an array, indexed by key hash

 A collision occurs when two keys have the same hash

 How to handle collisions?

 Store another data structure, such as a linked list, in the array location for
each key (called bucketing or chaining)

 Put (key, value) pairs into that data structure

 insert and find are O(1) when there are no collisions

 Expected complexity

 Worst case, every hash is a collision

 Complexity for insert and find comes from the tertiary data structure’s
complexity, e.g., O(n) for a linked list

 Be familiar with the alternative of bucketing: linear probing

83

A HashMap is a particular implementation of the Map interface

Graphs & Graph Algorithms

Spanning Trees

 A spanning tree is a

subgraph of an undirected

graph that:

 Is a tree

 Contains every vertex in the

graph

 Number of edges in a tree

m = n-1

Minimum Spanning Trees (MST)

 Spanning tree with minimum sum edge weights

 Prim’s algorithm

 Kruskal’s algorithm

 Not necessarily unique

Prim’s algorithm

 Graph search algorithm, builds up a spanning tree

from one root vertex

 Like BFS, but it uses a priority queue

 Priority is the weight of the edge to the vertex

 Also need to keep track of which edge we used

 Always picks smallest edge to an unvisited vertex

 Runtime is O(m log m)

 O(m) Priority Queue operations at log(m) each

Prim’s Algorithm Example

This is our

original

weighted

graph. The

numbers near

the edges

indicate their

weight.

Prim’s Algorithm Example

Vertex D has
been
arbitrarily
chosen as a
starting point.
Vertices A, B, E
and F are
connected to D
through a
single edge. A
is the vertex
nearest to D
and will be
chosen as the
second vertex
along with the
edge AD.

Prim’s Algorithm Example

The next
vertex chosen
is the vertex
nearest to
either D or A.
B is 9 away
from D and 7
away from A,
E is 15, and F
is 6. F is the
smallest
distance
away, so we
highlight the
vertex F and
the arc DF.

Prim’s Algorithm Example

The algorithm

carries on as

above. Vertex

B, which is 7

away from A,

is highlighted.

Prim’s Algorithm Example

End Result

Notice how
each vertex
has at least 1
edge
connecting to it
and that the
edge is the
least of the
edges
connected to
the vertex.

Kruskal’s Algorithm

 Idea: Find MST by connecting forest components using
shortest edges

 Process edges from least to greatest

 Initially, every node is its own component

 Either an edge connects two different components or it
connects a component to itself
 Add an edge only in the former case

 Picks smallest edge between two components

 O(m log m) time to sort the edges
 Also need the union-find structure to keep track of components,

but it does not change the running time

Kruskal’s Algorithm Example

This is our

original

graph. The

numbers near

the arcs

indicate their

weight. None

of the arcs

are

highlighted.

∞

Kruskal’s Algorithm Example

AD and CE

are the

shortest arcs,

with length 5,

and AD has

been

arbitrarily

chosen, so it is

highlighted.

Kruskal’s Algorithm Example

CE is now the

shortest arc

that does not

form a cycle,

with length 5,

so it is

highlighted as

the second

arc.

Kruskal’s Algorithm Example

The next arc,

DF with length

6, is

highlighted

using much the

same method.

Kruskal’s Algorithm Example

The next-shortest
arcs are AB and
BE, both with
length 7. AB is
chosen
arbitrarily, and is
highlighted. The
arc BD has been
highlighted in
red, because
there already
exists a path (in
green) between
B and D, so it
would form a
cycle (ABD) if it
were chosen.

Kruskal’s Algorithm Example

The process
continues to
highlight the
next-smallest arc,
BE with length 7.
Many more arcs
are highlighted
in red at this
stage: BC
because it would
form the loop
BCE, DE because
it would form the
loop DEBA, and
FE because it
would form
FEBAD.

Kruskal’s Algorithm Example

Finally, the

process

finishes with

the arc EG of

length 9, and

the minimum

spanning tree

is found.

Dijkstra’s Algorithm

 Compute length of shortest path from source vertex

to every other vertex

 Works on directed and undirected graphs

 Works only on graphs with non-negative edge

weights

 O(m log m) runtime when implemented with Priority

Queue, same as Prim’s

Dijkstra’s Algorithm

 Similar to Prim’s algorithm

 Difference lies in the priority

 Priority is the length of shortest path to a visited vertex

+ cost of edge to unvisited vertex

 We know the shortest path to every visited vertex

 On unweighted graphs, BFS gives us the same result

as Dijkstra’s algorithm

Dijkstra’s Algorithm

1. Assign to every node a distance value. Set it to zero for our

initial node and to infinity for all other nodes.

2. Mark all nodes as unvisited. Set initial node as current.

3. For current node, consider all its unvisited neighbors and

calculate their tentative distance (from the initial node) If this

distance is less than the previously recorded distance,

overwrite the distance.

4. When we are done considering all neighbors of the current

node, mark it as visited. A visited node will not be checked

ever again; its distance recorded now is final and minimal.

5. If all nodes have been visited, finish. Otherwise, set the

unvisited node with the smallest distance (from the initial

node) as the next "current node" and continue from step 3.

Dijkstra’s Algorithm Example

Initial

distances set

to 0 for initial

node and ∞

for all other

nodes.

0

∞

∞

∞

∞

∞

∞

Dijkstra’s Algorithm Example

Set distances

for all nodes

connected to

the initial

node. Mark

the initial

node as done

(red).

0

5

∞

∞

7

∞

∞

Dijkstra’s Algorithm Example

Select the node is

with the smallest

distance that isn’t

done, and update the

distances to its

neighbors.

F = 11 : 5 + 6 = 11

B = 7: 5 + 9 = 14 >

7

E = 20: 5 + 15 = 20

Mark D as visited.

0

5

11

∞

7

20

∞

Dijkstra’s Algorithm Example

Set the current
node to B.

E = 14: 7 + 7
= 14

C = 15: 7 + 8
= 15

Mark B as
visited.

0

5

11

∞

7

14

15

Dijkstra’s Algorithm Example

Repeat the
process:

E = 14: 11 +
8 = 19 > 14

G = 22: 11 +
11 = 22

Mark F as
visited

0

5

11

22

7

14

15

Dijkstra’s Algorithm Example

Repeat the

process:

C = 15: 14 + 5

= 19 > 15

G = 22: 14 + 9

= 23 > 22

Mark E as

visited

0

5

11

22

7

14

15

Sorting

http://www.sorting-algorithms.com/

http://www.sorting-algorithms.com/
http://www.sorting-algorithms.com/
http://www.sorting-algorithms.com/

Question Time

 Now we’ll take a 5-10 minute break

 We’ll begin Q&A session afterwards

