CS 2110 FINAL REVIEW

Johnathon Schultz

Final Information

\square Final
\square Thursday, December $16^{\text {th }}$

- Barton Hall - West
- 2:00-4:30
\square How to Review:
\square Review previous prelims (esp. this years!)
\square Review previous finals
\square Review lecture slides
\square Review previous review slides
\square Attend this session

Material

\square In short, everything ever
\square Types
\square Recursion
\square Lists and Trees
\square Big-O
\square Induction
\square Threads \&
Concurrency
\square ADTs:
\square Stacks
\square Queues
\square Priority Queves

- Maps
\square Sets
\square Graph Algorithms:
\square Prim's
\square Kruskal's
\square Dijkstra's

For the prelim...

\square Don't spend your time memorizing Java APIs!
\square If you want to use an ADT, it's acceptable to write code that looks reasonable, even if it's not the exact Java API. For example,

Queue<Integer> myQueue = new Queue<Integer>(); myQueve.enqueue(5);
int $\mathrm{x}=$ myQueve.dequeve();
\square This is not correct Java (Queue is an interface! And Java calls enqueue and dequeue "add" and "poll")
\square But it's fine for the exam.

Inheritance

\square Subclasses inherit fields \& methods of superclass
\square Overriding - subclass contains the same method as superclass (same name, parameters, static/not)
\square Shadowing - subclass contains the same field (instance variable) as superclass (this is BAD)
\square Casting - upcasting is always type-safe and OK
\square Downcasting is bad - sometimes doesn't work (hard to predict)
\square Java is single implementation inheritance and multiple interface inheritance

Typing

\square Suppose type B implements or extends type A
$\square B$ is a subtype of $A ; A$ is a supertype of B
\square Each variable has a static type
\square List<lnteger> x ; List<lnteger> is the static type
\square Note: List<SubtypeOfinteger> is not a subtype of List<lnteger>
\square Can safely assign x a dynamic subtype of List<Integer>
$\square \mathrm{x}=$ new ArrayList<lnteger>;
\square Static type can differ from dynamic type at runtime

- The dynamic type cannot be an interface

Typing examples

\square B var = new $C()$;
\square Static type $=\mathrm{B}$
\square Static type is used when calling fields; i.e. var.x will call the field x in class B
\square NEVER CHANGES
\square Dynamic type $=C$
\square Used when calling methods; i.e. var.hello() will call the method hello() in C (not the one in B !)
\square Changed by: var = new B() ;
\square Now, the dynamic type is B
\square Casting: var $=(B)$ var - does not change any type

Polymorphism

\square Previous slide: "Used when calling methods; i.e. var.hello() will call the method hello() in C (not the one in B!)"
\square This is called Polymorphism
\square When a method is called on an object, the method in the object's dynamic type is the method that is actually run!
\square NOT the method in its static type, even if the method is defined there.

The instanceof Operator

Code	Effect
dog instanceof Dog	true
dalmatian instanceof Dog	true
dog instanceof Dalmatian	false
dalmatian instanceof ShowDogInte rface	true
dalmatian instanceof dog	syntax error
! dalmatian instanceof Dog	syntax error
! (dalmatian instanceof Dog)	false
dog instanceOf Dalmatian	syntax error
dalmatian instanceof "Dog"	syntax error
dalmatian instanceof Class.forNa me ("DogPackage.Dog"	syntax error
null instanceof String	false

Recursion

\square To understand recursion, you must first understand recursion.
\square A procedure or subroutine whose implementation references itself
\square Examples

- Fibonacci: $\operatorname{Fib}(n)=\operatorname{Fib}(n-1)+\operatorname{Fib}(n-2)$
- Factorial: n ! $=\mathrm{n}$ * $(\mathrm{n}-1)$!
- Grammar Parsing
\square Must have one or more base cases and a recursive case
- You don't need to know proofs by induction for Prelim 1
\square If a problem asks you to write a recursive method, you must call that method within itself
\square You should know how to run through a recursive method and figure out its output
- See Recursion.java

How to Write Recursive Methods

\square Start with the base case
\square Ask yourself, what am I doing when I'm done?

- That's your base case
\square Next, what is the simplest case that isn't the base case?
\square Because of the nature of recursion, this case is exactly like all the other cases
\square For example, let's write a LinkedList Reverser...

Reversing a LinkedList

Public void reverse(???)\{
\}

Reversing a LinkedList

Public void reverse(Node curr)\{ if(curr.next $==$ null)\{
head = curr;
\}
\}

Reversing a LinkedList

Public void reverse(Node prev, Node curr)\{ if(curr.next $==$ null)\{
head = curr;
\} else\{
reverse(curr, curr.next);
\}
curr.next = prev;
\}

Reversing a LinkedList

But wait! We forgot one thing!

What if the list is empty?

Time for a recursive helper function!

Reversing a Linked List

\square Recursive helper functions are useful for edge cases that don't appear in the general recursion
public void reverse()\{

> if(! isEmpty() \&\& head.next != null)
> return reverse(null, head);
\}

Reversing a LinkedList

```
public void reverse(){
    if(! isEmpty() && head.next != null)
        return reverse(null, head);
}
Public void reverse(Node prev, Node curr){
    if(curr.next == null){
                        head = curr;
    }
    else{
            reverse(curr, curr.next);
    }
    curr.next = prev;
}
```


Grammars and Parsing

\square Refer to the following grammar (ignore spaces). $\langle\mathrm{S}\rangle$ is the start symbol of the grammar. (Note that $P \rightarrow a \mid b$ is really two rules, $P \rightarrow a$ and $P \rightarrow b$)

- <S> \rightarrow <exp>
$\square<\exp >\rightarrow<i n \dagger>+<\mathrm{int}>\left|<\mathrm{int}>-<m e d _i n \dagger>\right|<\mathrm{int}>+<\exp >$
\square <int> \rightarrow <small_int> | <med_int> <large_int> |
<small_int>.<large_int>
- <large_int> $\rightarrow 8$ |9
- <med_int> \rightarrow 5 | $6 \mid 7$
- <small_int> $\rightarrow 0|1| 2|3| 4$
\square Is " $4+2.8-49$ " a valid sentence?

Grammars and Parsing

\square Refer to the following grammar (ignore spaces). $\langle\mathrm{S}\rangle$ is the start symbol of the grammar. (Note that $P \rightarrow a \mid b$ is really two rules, $P \rightarrow a$ and $P \rightarrow b$)

- <S> \rightarrow <exp>
$\square<\exp >\rightarrow<i n \dagger>+<\mathrm{int}>\left|<\mathrm{int}>-<m e d _i n \dagger>\right|<\mathrm{int}>+<\exp >$
\square <int> \rightarrow <small_int> | <med_int> <large_int> |
<small_int>.<large_int>
- <large_int> $\rightarrow 8$ |9
- <med_int> \rightarrow 5 | $6 \mid 7$
- <small_int> $\rightarrow 0|1| 2|3| 4$
\square Is "30 $+0+0.99$ " a valid sentence?

Grammars and Parsing

\square Refer to the following grammar (ignore spaces). $\langle\mathrm{S}\rangle$ is the start symbol of the grammar. (Note that $P \rightarrow a \mid b$ is really two rules, $P \rightarrow a$ and $P \rightarrow b$)

- <S> \rightarrow <exp>
- <exp> \rightarrow <int> + <int> | <int> - <med_int> | <int> + <exp>
- <int> \rightarrow <small_int> | <med_int> <large_int> |
<small_int>.<large_int>
- <large_int> $\rightarrow 8$ |9
- <med_int> \rightarrow 5 | $6 \mid 7$
- <small_int> $\rightarrow 0|1| 2|3| 4$
\square Which rule makes the grammar infinite?

Recursive Descent Parsers

\square Recursively parse the data by descending from the top level into smaller and smaller chunks.
\square Cannot handle all Grammars
\square Ex:

- $S \rightarrow b$
- $S \rightarrow S a$
\square Grammar can be rewritten:
- $S \rightarrow b$
- $S \rightarrow b A$
- $A \rightarrow a$
$\square A \rightarrow a A$

Example

$A:=A B$

boolean $A()$ \{ if $(A())\{$ return B() ;
\}
return false;
\}

trees

\square Tree: recursive data structure (similar to lists)
\square Each cell may have zero or more successors (children)

- Each cell has exactly one predecessor (parent) except the root, which has none
\square All cells are reachable from root

General tree

Not a tree

Binary tree

List-like tree

Tree terminology

$\square \quad M$ is the root of this tree
$\square \quad \mathbf{G}$ is the root of the left subtree of \mathbf{M}
$\square \quad B, H, J, N$, and S are leaves
$\square \quad \mathbf{N}$ is the left child of $\mathbf{P} ; \mathbf{S}$ is the right child
$\square \quad \mathbf{P}$ is the parent of \mathbf{N}
$\square \quad M$ and G are ancestors of D
$\square \quad \mathbf{P}, \mathbf{N}$, and S are descendants of W
$\square \quad$ Node J is at depth 2 (i.e., depth $=$ length of path from root)
$\square \quad$ Node W is at height 2 (i.e., height $=$ length of longest path to a leaf)
$\square \quad$ A tree is complete if it all the levels are completely filled except for the last

Binary search trees

\square Also known as BSTs
\square Children to the left are less than the current node
\square Children to the right are greater than the current node

Tree traversals

\square Preorder
\square Root node, Left Node, Right Node
\square Postorder
\square Left Node, Right Node, Root Node
\square Inorder
\square Left Node, Root Node, Right Node
\square Breadth First

- First level, Second Level, Third Level, ...
\square Depth First
\square Root, Child, Child, Child, ..., Leaf, Up One, Child, Child, Leaf,

Preorder Traversal

$\square \operatorname{Pre}(5)$
\square 5, Pre(2), $\operatorname{Pre}(7)$
\square 5, 2, 1, Pre(3), $\operatorname{Pre}(7)$
$\square 5,2,1,3,4, \operatorname{Pre}(7)$
$\square 5,2,1,3,4,7,6,9$

Inorder Traversal

$\square \operatorname{In}(5)$
$\square \ln (2), 5, \ln (7)$
$\square 1,2, \ln (3), 5, \ln (7)$
$\square 1,2,3,4,5, \ln (7)$
$\square 1,2,3,4,5,6,7,9$

Postorder Traversal

\square Post(5)
\square Post(2), Post(7), 5
$\square 1, \operatorname{Post}(3), 2, \operatorname{Post}(7), 5$
$\square 1,4,3,2, \operatorname{Post}(7), 5$
$\square 1,4,3,2,6,9,7,5$

Breadth first and depth first

- Breadth First:
- 5, Depth 1, Depth 2, Depth 3
- 5, 2, 7, Depth 2, Depth 3
- 5, 2, 7, 1, 3, 6, 9, Depth 3
- 5, 2, 7, 1, 3, 6, 9, 4
\square Depth First:
- 5, 5.Left, 5.Right
$\square 5,2,2 . L e f t, 2 . R i g h t$, 5.Right
- 5, 2, 1, 2.Right, 5.Right
$\square 5,2,1,3,3$. Right, 5.Right
$\square 5,2,1,3,4,5$. Right

Big O notation

$\square F$ is $O(n)$ means F is on the order of n.
\square Big O provides an upper bound for the number of operations the function is performing, based on the size of its input

Notation	Name	Example
$\mathrm{O}(1)$	Constant	Determining if a number is odd
$\mathrm{O}(\log \mathrm{n})$	Logarithmic	Finding an item in a sorted list or tree
$\mathrm{O}(\mathrm{n})$	Linear	Finding an item in an unsorted list or tree.
$\mathrm{O}(\mathrm{n}$ log n$)$	Quasilinear	Quicksort (best and average case), Merge sort
$\mathrm{O}\left(\mathrm{n}^{2}\right)$	Quadratic	Bubble sort, Quicksort (worst case)
$\mathrm{O}\left(\mathrm{n}^{\mathrm{c}}\right)$	Polynomial	Maximum matching for bipartite graphs
$\mathrm{O}\left(\mathrm{c}^{\mathrm{n}}\right)$	Exponential	Travelling salesman advanced, K-SAT brute-force
$\mathrm{O}\left(\mathrm{n}^{n}\right) \mathrm{O}(\mathrm{n}!)$	Factorial	Travelling salesman brute-force

Formal Definition

Let $f(x)$ and $g(x)$ be two functions defined on some subset of the real numbers.

$$
f(x)=O(g(x)) \text { as } x \rightarrow \infty
$$

if and only if

$$
|f(x)| \leq M|g(x)| \text { for all } x>x_{0}
$$

M is some constant multiplier
X_{0} is a value of x above which this statement is always true
\square Big O - Upper Bound
\square Big Omega - Lower Bound (Ω)
\square Big Theta - Tight Upper and Lower Bound (Θ)

Big-O notation

\square For the prelim, you should know...
\square Worst case Big-O complexity for the algorithms we've covered and for common implementations of ADT operations

- Examples
- Mergesort is worst-case $\mathrm{O}(\mathrm{n} \log \mathrm{n})$
- PriorityQueue insert using a heap is $O(\log n)$
\square Average case time complexity for some algorithms and ADT operations, if it has been noted in class
- Examples
- Quicksort is average case $O(n \log n)$
- HashMap insert is average case $O(1)$

Big-O notation

\square For the prelim, you should know...
\square How to estimate the Big-O worst case runtimes of basic algorithms (written in Java or pseudocode)

- Count the operations
- Loops tend to multiply the loop body operations by the loop counter
- Trees and divide-and-conquer algorithms tend to introduce $\log (n)$ as a factor in the complexity
- Basic recursive algorithms, i.e., binary search or mergesort

Induction

\square We are going to spell the problem out for you
\square Trick is to take the information, write it down correctly, know algebra
\square You can get most of the points on an induction question just by writing down:
\square Base Cases
\square Inductive Hypothesis
\square Using the I.H.

Induction Form

\square Base Case(s)
\square Inductive Hypothesis
\square Proof ($\mathrm{n}+1$ case):
\square Given (Definition) Statement $=$ What you want to prove

- ...
\square Substitution using the I.H.

\square Statement you want to Prove

Example

$$
\begin{gathered}
\text { Prove that for } n \geq 1, \\
2+2^{2}+2^{3}+2^{4}+\cdots+2^{n}=2^{n+1}-2 \\
\text { Let } n=1 \text {. Then: } \\
2^{1}=2=2^{1+1}-2 \text { (Base Case) }
\end{gathered}
$$

Assume that the equation holds for all n $2+2^{2}+2^{3}+\cdots+2^{n}=2^{(n+1)}-2$ (I.H.)

Example Cont.

$$
\begin{aligned}
& 2+2^{1}+2^{2}+\cdots+2^{n}+2^{n+1}=2^{n+2}-2 \\
& 2^{n+1}-2+2^{n+1}=2^{n+2}-2 \text { (Via I.H.) } \\
& 2 \cdot 2^{n+1}-2=2^{n+2}-2 \\
& 2^{1} \cdot 2^{n+1}-2=2^{n+2}-2 \\
& 2^{n+2}-2=2^{n+2}-2 \text { (Q.E.D.) }
\end{aligned}
$$

Reviewing Induction

\square Look at previous exams
\square Look at lecture notes from CS 2800: Discrete Structures
\square Even if you can't figure out the algebra, you'll get a majority of the credit if you do what I told you

Threads \& Concurrency

Threads and Concurrency

\square What you need to know is very simple
\square Threads allow for multiple paths of execution in the code - parallel computing
\square Do Not:
\square Access one variable from multiple threads without synchronization
\square Operations you think are atomic are NOT
\square Cause of most thread synchronization problems

- "i++" is actually three instructions:
- Read-Update-Write

Threads and Concurrency

\square Do: Synchronize access to variables
\square wait(), notify(), notifyAll()
\square synchronized(Object)\{ \} blocks
\square Use thread-safe objects, for example:

- AtomicInteger
- BlockingQueue
- ConcurrentHashMap,
- ConcurrentSkipListMap (TreeMap).

Threads \& Concurrency

\square See the last question on last year's final
\square We're not going make you write threaded code, only talk about what is wrong or right with existing code

Abstract Data Types

Abstract Data Types

\square What do we mean by "abstract"?
\square Defined in terms of operations that can be performed, not as a concrete structure

■ Example: Priority Queve is an ADT, Heap is a concrete data structure
\square For ADTs, we should know:
\square Operations offered, and when to use them
\square Big-O complexity of these operations for standard implementations

ADTs: The Bag Interface

```
interface Bag<E> {
    void insert(E obj);
    E extract(); //extract some element
    boolean isEmpty();
    E peek(); // optional: return next
    element without removing
}
```

Examples: Queue, Stack, PriorityQueue

Queues

\square First-In-First-Out (FIFO)
\square Objects come out of a queve in the same order they were inserted
\square Linked List implementation
\square insert(obi): O(1)

- Add object to tail of list
- Also called enqueve, add (Java)
\square extract(): $\mathrm{O}(1)$
- Remove object from head of list
- Also called dequeue, poll (Java)

Stacks

\square Last-In-First-Out (LIFO)
\square Objects come out of a queue in the opposite order they were inserted
\square Linked List implementation
\square insert(obi): O(1)

- Add object to tail of list
- Also called push (Java)
\square extract(): O(1)
- Remove object from head of list
- Also called pop (Java)

Priority Queues

\square Objects come out of a Priority Queue according to their priority
\square Generalized
\square By using different priorities, can implement Stacks or Queues
\square Heap implementation (as seen in lecture)

- insert(obj, priority): O(log n)
- insert object into heap with given priority
- Also called add (Java)
\square extract(): O(log n)
- Remove and return top of heap (minimum priority element)
- Also called poll (Java)

Heaps

Concrete Data Structure
Balanced binary tree
Obeys heap order invariant:

Priority(child) \geq Priority(parent)
Operationsinsert(value, priority)
extract()

Heap insert()

- Put the new element at the end of the array
- If this violates heap order because it is smaller than its parent, swap it with its parent
- Continue swapping it up until it finds its rightful place
- The heap invariant is maintained!

Heap insert()

insert()

- Time is $O(\log n)$, since the tree is balanced
- size of tree is exponential as a function of depth
- depth of tree is logarithmic as a function of size

extract()

- Remove the least element - it is at the root
- This leaves a hole at the root - fill it in with the last element of the array
- If this violates heap order because the root element is too big, swap it down with the smaller of its children
- Continue swapping it down until it finds its rightful place
- The heap invariant is maintained!

extract()

extract()

- Time is $O(\log n)$, since the tree is balanced

Store in an ArrayList or Vector

- Elements of the heap are stored in the array in order, going across each level from left to right, top to bottom
- The children of the node at array index n are found at $2 n+1$ and $2 n+2$
- The parent of node n is found at $(n-1) / 2$

Sets

\square ADT Set
\square Operations:
-void insert(Object element);
■boolean contains (Object element);
-void remove (Object element);
-int size();
-iteration
\square No duplicates allowed
\square Hash table implementation: $\mathrm{O}(1)$ insert and contains
\square SortedSet tree implementation: $\mathrm{O}(\log \mathrm{n})$ insert and contains

A set makes no promises about ordering, but you can still iterate over it.

Dictionaries

ADT Dictionary (aka Map)
\square Operations:

- void insert(Object key, Object value);

■ void update (Object key, Object value);

- Object find (Object key);
- void remove (Object key) ;
- boolean isEmpty();
- void clear();
\square Think of: key = word; value = definition
\square Where used:
\square Symbol tables
\square Wide use within other algorithms
A HashMap is a particular implementation of the Map interface

Dictionaries

\square Hash table implementation:

- Use a hash function to compute hashes of keys
- Store values in an array, indexed by key hash
- A collision occurs when two keys have the same hash
- How to handle collisions?
- Store another data structure, such as a linked list, in the array location for each key (called bucketing or chaining)
- Put (key, value) pairs into that data structure
\square insert and find are $\mathrm{O}(1)$ when there are no collisions
- Expected complexity
- Worst case, every hash is a collision
- Complexity for insert and find comes from the tertiary data structure's complexity, e.g., O(n) for a linked list
\square Be familiar with the alternative of bucketing: linear probing

A HashMap is a particular implementation of the Map interface

Spanning Trees

\square A spanning tree is a subgraph of an undirected graph that:
\square Is a tree
\square Contains every vertex in the graph
\square Number of edges in a tree $\mathrm{m}=\mathrm{n}-1$

Minimum Spanning Trees (MST)

\square Spanning tree with minimum sum edge weights
\square Prim's algorithm
\square Kruskal's algorithm
\square Not necessarily unique

Prim's algorithm

\square Graph search algorithm, builds up a spanning tree from one root vertex
\square Like BFS, but it uses a priority queue

- Priority is the weight of the edge to the vertex
- Also need to keep track of which edge we used
\square Always picks smallest edge to an unvisited vertex
\square Runtime is $\mathrm{O}(\mathrm{m} \log \mathrm{m})$
$\square O(m)$ Priority Queue operations at $\log (m)$ each

Prim's Algorithm Example

Kruskal's Algorithm

\square Idea: Find MST by connecting forest components using shortest edges
\square Process edges from least to greatest
\square Initially, every node is its own component
\square Either an edge connects two different components or it connects a component to itself

- Add an edge only in the former case
\square Picks smallest edge between two components
$\square \mathrm{O}(\mathrm{m} \log \mathrm{m})$ time to sort the edges
- Also need the union-find structure to keep track of components, but it does not change the running time

Kruskal's Algorithm Example

This is our
original
graph. The
numbers near
the arcs
indicate their
weight. None
of the arcs
are
highlighted.
∞

Kruskal's Algorithm Example

AD and CE
are the
shortest arcs,
with length 5,
and AD has
been
arbitrarily
chosen, so it is
highlighted.

Kruskal's Algorithm Example

Kruskal's Algorithm Example

The next arc,
DF with length
6, is
highlighted
using much the
same method.

Kruskal's Algorithm Example

The next-shortest
arcs are $A B$ and
$B E$, both with
length $7 . A B$ is
chosen
arbitrarily, and is
highlighted. The
arc $B D$ has been
highlighted in
red, because
there already
exists a path (in
green) between
B and D, so it
would form a
cycle (ABD) if it
were chosen.

Kruskal's Algorithm Example

The process
continues to
highlight the
next-smallest arc,
BE with length 7.
Many more arcs
are highlighted
in red at this
stage: BC
because it would
form the loop
BCE, DE because
it would form the
loop DEBA, and
FE because it
would form
FEBAD.

Kruskal's Algorithm Example

Finally, the
process
finishes with
the arc EG of
length 9, and
the minimum
spanning tree
is found.

Dijkstra's Algorithm

\square Compute length of shortest path from source vertex to every other vertex
\square Works on directed and undirected graphs
\square Works only on graphs with non-negative edge weights
$\square \mathbf{O}(\mathbf{m} \log \mathbf{m})$ runtime when implemented with Priority Queue, same as Prim's

Dijkstra's Algorithm

\square Similar to Prim's algorithm
\square Difference lies in the priority
\square Priority is the length of shortest path to a visited vertex + cost of edge to unvisited vertex
\square We know the shortest path to every visited vertex
\square On unweighted graphs, BFS gives us the same result as Dijkstra's algorithm

Dijkstra's Algorithm

. Assign to every node a distance value. Set it to zero for our initial node and to infinity for all other nodes.
2. Mark all nodes as unvisited. Set initial node as current.
3. For current node, consider all its unvisited neighbors and calculate their tentative distance (from the initial node) If this distance is less than the previously recorded distance, overwrite the distance.
4. When we are done considering all neighbors of the current node, mark it as visited. A visited node will not be checked ever again; its distance recorded now is final and minimal.
5. If all nodes have been visited, finish. Otherwise, set the unvisited node with the smallest distance (from the initial node) as the next "current node" and continue from step 3.

Dijkstra's Algorithm Example

Initial
distances set
to 0 for initial
node and ∞
for all other
nodes.

Dijkstra's Algorithm Example

Dijkstra's Algorithm Example

Dijkstra's Algorithm Example

Dijkstra's Algorithm Example

Dijkstra's Algorithm Example

http://www.sorting-algorithms.com/

Question Time

\square Now we'll take a 5-10 minute break
\square We'll begin Q\&A session afterwards

