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Final Information 

 Final 

 Thursday, December 16th  

 Barton Hall – West 

 2:00 - 4:30 

 How to Review: 

 Review previous prelims (esp. this years!) 

 Review previous finals 

 Review lecture slides 

 Review previous review slides 

 Attend this session 



Material 

 In short, everything 
ever 

 Types 

 Recursion 

 Lists and Trees 

 Big-O 

 Induction 

 Threads & 
Concurrency 

 

 ADTs:  

 Stacks 

 Queues 

 Priority Queues 

 Maps 

 Sets 

 Graph Algorithms: 

 Prim’s 

 Kruskal’s 

 Dijkstra’s 



For the prelim… 

 Don’t spend your time memorizing Java APIs! 

 If you want to use an ADT, it’s acceptable to write code 
that looks reasonable, even if it’s not the exact Java 
API.  For example, 

Queue<Integer> myQueue = new Queue<Integer>(); 

myQueue.enqueue(5); 

… 

int x = myQueue.dequeue(); 

 This is not correct Java (Queue is an interface!  And 
Java calls enqueue and dequeue “add” and “poll”) 

 But it’s fine for the exam. 



Inheritance 



Inheritance 

 Subclasses inherit fields & methods of superclass 

 Overriding – subclass contains the same method as 
superclass (same name, parameters, static/not) 

 Shadowing – subclass contains the same field (instance 
variable) as superclass (this is BAD) 

 Casting – upcasting is always type-safe and OK 

 Downcasting is bad – sometimes doesn’t work (hard to 
predict) 

 Java is single implementation inheritance and multiple 
interface inheritance 

 



Typing 

 Suppose type B implements or extends type A 

 B is a subtype of A; A is a supertype of B 

 Each variable has a static type 

 List<Integer> x; List<Integer> is the static type 

 Note: List<SubtypeOfInteger> is not a subtype of 
List<Integer> 

 Can safely assign x a dynamic subtype of List<Integer> 

 x = new ArrayList<Integer>; 

  Static type can differ from dynamic type at runtime 

 The dynamic type cannot be an interface 

 



Typing examples 

 B var = new C(); 

 Static type = B 

 Static type is used when calling fields; i.e. var.x will call 
the field x in class B 

 NEVER CHANGES 

 Dynamic type = C 

 Used when calling methods; i.e. var.hello() will call the 
method hello() in C (not the one in B!) 

 Changed by: var = new B(); 

 Now, the dynamic type is B 

 Casting: var = (B) var – does not change any type 

 



Polymorphism 

 Previous slide: “Used when calling methods; i.e. 

var.hello() will call the method hello() in C (not the 

one in B!)” 

 This is called Polymorphism 

 When a method is called on an object, the method 

in the object’s dynamic type is the method that is 

actually run!  

 NOT the method in its static type, even if the 

method is defined there. 



The instanceof Operator 

Code Effect 

dog instanceof Dog true 

dalmatian instanceof Dog true 

dog instanceof Dalmatian false 

dalmatian instanceof ShowDogInte
rface 

true 

dalmatian instanceof dog syntax error 

! dalmatian instanceof Dog syntax error 

! (dalmatian instanceof Dog) false 

dog instanceOf Dalmatian syntax error 

dalmatian instanceof "Dog" syntax error 

dalmatian instanceof Class.forNa
me ("DogPackage.Dog" ) 

syntax error 

null instanceof String false 

 
 

 



Recursion 



Recursion 

 To understand recursion, you must first understand recursion. 

 A procedure or subroutine whose implementation references itself 

 Examples 

 Fibonacci: Fib(n) = Fib(n-1) + Fib(n-2) 

 Factorial: n! = n * (n-1)! 

 Grammar Parsing 

 Must have one or more base cases and a recursive case 

 You don’t need to know proofs by induction for Prelim 1 

 If a problem asks you to write a recursive method, you must call that 
method within itself 

 You should know how to run through a recursive method and figure out its 
output 

 See Recursion.java 

 



How to Write Recursive Methods 

 Start with the base case 

 Ask yourself, what am I doing when I’m done? 

 That’s your base case 

 Next, what is the simplest case that isn’t the base 

case? 

 Because of the nature of recursion, this case is exactly 

like all the other cases 

 

 For example, let’s write a LinkedList Reverser… 



Reversing a LinkedList 

Public void reverse(???){ 

 

 

 

 

} 

 



Reversing a LinkedList 

Public void reverse(Node curr){ 

 if(curr.next == null){ 

  head = curr; 

 } 

} 

 



Reversing a LinkedList 

Public void reverse(Node prev, Node curr){ 

 if(curr.next == null){ 

  head = curr; 

 } 

 else{ 

  reverse(curr, curr.next); 

 } 

 curr.next = prev; 

} 

 



Reversing a LinkedList 

But wait!  We forgot one thing!  

 

 

What if the list is empty? 

 

 

 

Time for a recursive helper function! 



Reversing a Linked List 

 Recursive helper functions are useful for edge 

cases that don’t appear in the general recursion 

public void reverse(){ 

 if(! isEmpty() && head.next != null) 

  return reverse(null, head); 

}  



Reversing a LinkedList 

public void reverse(){ 

 if(! isEmpty() && head.next != null) 

  return reverse(null, head); 

}  

Public void reverse(Node prev, Node curr){ 

 if(curr.next == null){ 

  head = curr; 

 } 

 else{ 

  reverse(curr, curr.next); 

 } 

 curr.next = prev; 

} 

 



Grammars and Parsing 

 Refer to the following grammar (ignore spaces). <S> is the start 

symbol of the grammar.  (Note that P → a | b is really two rules, 

P  →  a and P → b) 

 <S> → <exp> 

 <exp> → <int> + <int> | <int> - <med_int> | <int> + <exp> 

 <int> → <small_int> | <med_int> <large_int> |   

 <small_int>.<large_int> 

 <large_int> → 8 | 9 

 <med_int> → 5 | 6 | 7 

 <small_int> → 0 | 1 | 2 | 3 | 4 

 Is “4 + 2.8 – 49” a valid sentence? 

 



Grammars and Parsing 

 Refer to the following grammar (ignore spaces). <S> is the start 

symbol of the grammar.  (Note that P → a | b is really two rules, 

P  →  a and P → b) 

 <S> → <exp> 

 <exp> → <int> + <int> | <int> - <med_int> | <int> + <exp> 

 <int> → <small_int> | <med_int> <large_int> |   

 <small_int>.<large_int> 

 <large_int> → 8 | 9 

 <med_int> → 5 | 6 | 7 

 <small_int> → 0 | 1 | 2 | 3 | 4 

 Is “30 + 0 + 0.99” a valid sentence? 

 



Grammars and Parsing 

 Refer to the following grammar (ignore spaces). <S> is the start 

symbol of the grammar.  (Note that P → a | b is really two rules, 

P  →  a and P → b) 

 <S> → <exp> 

 <exp> → <int> + <int> | <int> - <med_int> | <int> + <exp> 

 <int> → <small_int> | <med_int> <large_int> |   

 <small_int>.<large_int> 

 <large_int> → 8 | 9 

 <med_int> → 5 | 6 | 7 

 <small_int> → 0 | 1 | 2 | 3 | 4 

 Which rule makes the grammar infinite? 

 



Recursive Descent Parsers 

 Recursively parse the data by descending from the 
top level into smaller and smaller chunks. 

 Cannot handle all Grammars 

 Ex:  
 S → b 

 S → Sa 

 Grammar can be rewritten: 
 S → b 

 S → bA 

 A→ a 

 A → aA 

 



Example 

A := A B  

  

 boolean A() {  

  if (A()) {  

   return B();  

  }   

  return false; 

 } 



Trees 



trees 

 Tree: recursive data 
structure (similar to lists) 

 Each cell may have zero 
or more successors 
(children) 

 Each cell has exactly one 
predecessor (parent) 
except the root, which has 
none 

 All cells are reachable 
from root 
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Tree terminology 

 M is the root of this tree 

 G is the root of the left subtree of M 

 B, H, J, N, and S are leaves 

 N is the left child of P; S is the right 
child 

 P is the parent of N 

 M and G are ancestors of D 

 P, N, and S are descendants of W 

 Node J is at depth 2 (i.e., depth = 
length of path from root) 

 Node W is at height 2 (i.e., height = 
length of longest path to a leaf) 

 A tree is complete if it all the levels 
are completely filled except for the 
last 

M 

G W 

P J D 

N H B S 



Binary search trees 

 Also known as BSTs 

 Children to the left are less than the current node 

 Children to the right are greater than the current 

node 



Tree traversals 

 Preorder 
 Root node, Left Node, Right Node 

 Postorder 
 Left Node, Right Node, Root Node 

 Inorder 
 Left Node, Root Node, Right Node 

 Breadth First 
 First level, Second Level, Third Level, … 

 Depth First 
 Root, Child, Child, Child, …, Leaf, Up One, Child, Child, Leaf, 

… 



Preorder Traversal 

 Pre(5) 

 5, Pre(2), Pre(7) 

 5, 2, 1, Pre(3), Pre(7) 

 5, 2, 1, 3, 4, Pre(7) 

 5, 2, 1, 3, 4, 7, 6, 9 

 



Inorder Traversal 

 In(5) 

 In(2), 5, In(7) 

 1, 2, In(3), 5, In(7) 

 1, 2, 3, 4, 5, In(7) 

 1, 2, 3, 4, 5, 6, 7, 9  



Postorder Traversal 

 Post(5) 

 Post(2), Post(7), 5 

 1, Post(3), 2, Post(7), 5 

 1, 4, 3, 2, Post(7), 5 

 1, 4, 3, 2, 6, 9, 7, 5 

 



Breadth first and depth first 

 Breadth First:  

 5, Depth 1, Depth 2, Depth 3  

 5, 2, 7, Depth 2, Depth 3  

 5, 2, 7, 1, 3, 6, 9, Depth 3 

 5, 2, 7, 1, 3, 6, 9, 4  

 Depth First: 

 5, 5.Left, 5.Right 

 5, 2, 2.Left, 2.Right, 
5.Right 

 5, 2, 1, 2.Right, 5.Right 

 5, 2, 1, 3, 3.Right, 5.Right 

 5, 2, 1, 3, 4, 5.Right 



Efficiency 



Big O notation 

 F is O(n) means F is on the order of n. 

 Big O provides an upper bound for the number of 

operations the function is performing, based on the size of its 

input 

 5n2 + log n + n – 40 is O(n2) 

 

Notation Name Example 

O(1) Constant Determining if a number is odd 

O(log n) Logarithmic Finding an item in a sorted list or tree 

O(n) Linear Finding an item in an unsorted list or tree. 

O(n log n) Quasilinear Quicksort (best and average case), Merge sort 

O(n2) Quadratic Bubble sort, Quicksort (worst case) 

O(nc) Polynomial Maximum matching for bipartite graphs 

O(cn) Exponential Travelling salesman advanced, K-SAT brute-force 

O(nn) O(n!) Factorial Travelling salesman brute-force 



Formal Definition 

Let f(x) and g(x) be two functions defined on some subset 
of the real numbers.  

 

𝑓 𝑥 = 𝑂 𝑔 𝑥 𝑎𝑠 𝑥 → ∞ 

 

if and only if 

 

𝑓 𝑥 ≤ 𝑀 𝑔 𝑥  for all 𝑥 > 𝑥0 

M is some constant multiplier 

X0 is a value of x above which this statement is always 
true 



Also… 

 Big O – Upper Bound 

 Big Omega – Lower Bound (Ω) 

 Big Theta – Tight Upper and Lower Bound (Θ) 



Big-O notation 

 For the prelim, you should know… 

 Worst case Big-O complexity for the algorithms we’ve 
covered and for common implementations of ADT 
operations 

 Examples 

 Mergesort is worst-case O(n log n) 

 PriorityQueue insert using a heap is O(log n) 

 Average case time complexity for some algorithms and 
ADT operations, if it has been noted in class 

 Examples 

 Quicksort is average case O(n log n) 

 HashMap insert is average case O(1) 



Big-O notation 

 For the prelim, you should know… 

 How to estimate the Big-O worst case runtimes of basic 

algorithms (written in Java or pseudocode) 

 Count the operations 

 Loops tend to multiply the loop body operations by the loop 

counter 

 Trees and divide-and-conquer algorithms tend to introduce 

log(n) as a factor in the complexity 

 Basic recursive algorithms, i.e., binary search or mergesort 

 

 



Induction 



Induction 

 We are going to spell the problem out for you 

 Trick is to take the information, write it down 

correctly, know algebra 

 You can get most of the points on an induction 

question just by writing down: 

 Base Cases 

 Inductive Hypothesis 

 Using the I.H. 



Induction Form 

 Base Case(s) 

 Inductive Hypothesis 

 Proof (n+1 case): 

 Given (Definition) Statement = What you want to prove  

 … 

 Substitution using the I.H. 

 … 

 Statement you want to Prove 



Example 

Prove that for 𝑛 ≥ 1,  
2 + 22 + 23 + 24 + ⋯ + 2𝑛 = 2𝑛+1 − 2 

 

Let 𝑛 = 1. Then: 
21 = 2 = 21+1 − 2 (Base Case) 

 

Assume that the equation holds for all 𝑛 
2 + 22 + 23 + ⋯ + 2𝑛 = 2 𝑛+1 − 2 (I.H.) 

 



Example Cont. 

2 + 21 + 22 + ⋯ + 2𝑛 + 2𝑛+1 = 2𝑛+2 − 2 
2𝑛+1 − 2 + 2𝑛+1 = 2𝑛+2 − 2 (Via I.H.) 
2 ⋅ 2𝑛+1 − 2 = 2𝑛+2 − 2 
21 ⋅ 2𝑛+1 − 2 = 2𝑛+2 − 2 
2𝑛+2 − 2 = 2𝑛+2 − 2 (Q.E.D.) 



Reviewing Induction 

 Look at previous exams 

 Look at lecture notes from CS 2800: Discrete 

Structures 

 Even if you can’t figure out the algebra, you’ll get a 

majority of the credit if you do what I told you 



Threads & Concurrency 



Threads and Concurrency 

 What you need to know is very simple 

 Threads allow for multiple paths of execution in the 
code – parallel computing 

 Do Not: 

 Access one variable from multiple threads without 
synchronization 

 Operations you think are atomic are NOT 

 Cause of most thread synchronization problems 

 “i++” is actually three instructions:  

 Read-Update-Write 



Threads and Concurrency 

 Do: Synchronize access to variables 

 wait(), notify(), notifyAll() 

 synchronized(Object){ } blocks 

 Use thread-safe objects, for example:  

 AtomicInteger 

 BlockingQueue  

 ConcurrentHashMap,  

 ConcurrentSkipListMap (TreeMap). 



Threads & Concurrency 

 See the last question on last year’s final 

 

 We’re not going make you write threaded code, 

only talk about what is wrong or right with existing 

code 



Abstract Data Types 



Abstract Data Types 

 What do we mean by “abstract”? 

 Defined in terms of operations that can be performed, 

not as a concrete structure 

 Example: Priority Queue is an ADT, Heap is a concrete data 

structure 

 For ADTs, we should know: 

 Operations offered, and when to use them 

 Big-O complexity of these operations for standard 

implementations 

 



ADTs: The Bag Interface 
52 

interface Bag<E> { 

   void insert(E obj); 

   E extract(); //extract some element 

   boolean isEmpty(); 

  E peek(); // optional: return next 

    element without removing 

} 

Examples: Queue, Stack, PriorityQueue 



Queues 

  First-In-First-Out (FIFO) 

 Objects come out of a queue in the same order they 
were inserted 

 Linked List implementation 

 insert(obj):  O(1) 

 Add object to tail of list 

 Also called enqueue, add (Java) 

 extract(): O(1)  

 Remove object from head of list 

 Also called dequeue, poll (Java) 

 

 

 

53 



Stacks 

  Last-In-First-Out (LIFO) 

 Objects come out of a queue in the opposite order they 
were inserted 

 Linked List implementation 

 insert(obj):  O(1) 

 Add object to tail of list 

 Also called push (Java) 

 extract(): O(1)  

 Remove object from head of list 

 Also called pop (Java) 

 

 

 

54 



Priority Queues 

 Objects come out of a Priority Queue according to their 
priority 

 Generalized 

 By using different priorities, can implement Stacks or 
Queues 

 Heap implementation (as seen in lecture) 

 insert(obj, priority):  O(log n) 
 insert object into heap with given priority 

 Also called add (Java) 

 extract(): O(log n)  
 Remove and return top of heap (minimum priority element) 

 Also called poll (Java) 

 

 

 

55 



Heaps 

 Concrete Data Structure 

 Balanced binary tree 

 Obeys heap order 

invariant: 

Priority(child) ≥ Priority(parent) 

 Operations 

 insert(value, priority) 

 extract() 

 



• Put the new element at the end of the array 

 

• If this violates heap order because it is smaller than 

its parent, swap it with its parent 

 

• Continue swapping it up until it finds its rightful 

place 

 

• The heap invariant is maintained! 

Heap insert() 
57 
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Heap insert() 
62 



• Time is O(log n), since the tree is balanced 

 
– size of tree is exponential as a function of depth 

 

– depth of tree is logarithmic as a function of size 

insert() 
63 



• Remove the least element – it is at the root 

• This leaves a hole at the root – fill it in with the last 

element of the array 

• If this violates heap order because the root element 

is too big, swap it down with the smaller of its 

children 

• Continue swapping it down until it finds its rightful 

place 

• The heap invariant is maintained! 

extract() 
64 
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• Time is O(log n), since the tree is balanced 

extract() 
79 



• Elements of the heap are stored in the array in 

order, going across each level from left to right, top 

to bottom 

 

• The children of the node at array index n are found 

at 2n + 1 and 2n + 2 
 

• The parent of node n is found at (n – 1)/2 

Store in an ArrayList or Vector 
80 



Sets 

 ADT Set 

 Operations: 

void insert(Object element); 

boolean contains(Object element); 

void remove(Object element); 

int size(); 

iteration 

 No duplicates allowed 

 Hash table implementation: O(1) insert and contains 

 SortedSet tree implementation: O(log n) insert and 
contains 

 

81 

A set makes no promises about ordering, but you can still iterate over it. 



Dictionaries 

 ADT Dictionary (aka Map) 

 Operations: 

 void insert(Object key, Object value); 

 void update(Object key, Object value); 

 Object find(Object key); 

 void remove(Object key); 

 boolean isEmpty(); 

 void clear(); 

 

 Think of:  key = word; value = definition 

 Where used: 

 Symbol tables 

 Wide use within other algorithms 

82 

A HashMap is a particular implementation of the Map interface 



Dictionaries 

 Hash table implementation: 

 Use a hash function to compute hashes of keys 

 Store values in an array, indexed by key hash 

 A collision occurs when two keys have the same hash 

 How to handle collisions? 

 Store another data structure, such as a linked list, in the array location for 
each key (called bucketing or chaining) 

 Put (key, value) pairs into that data structure 

 insert and find are O(1) when there are no collisions 

 Expected complexity 

 Worst case, every hash is a collision 

 Complexity for insert and find comes from the tertiary data structure’s 
complexity, e.g., O(n) for a linked list 

 Be familiar with the alternative of bucketing: linear probing 

83 

A HashMap is a particular implementation of the Map interface 



Graphs & Graph Algorithms 



Spanning Trees 

 A spanning tree is a 

subgraph of an undirected 

graph that: 

 Is a tree 

 Contains every vertex in the 

graph 

 Number of edges in a tree 

m = n-1 



Minimum Spanning Trees (MST) 

 Spanning tree with minimum sum edge weights 

 Prim’s algorithm 

 Kruskal’s algorithm 

 Not necessarily unique 



Prim’s algorithm 

 Graph search algorithm, builds up a spanning tree 

from one root vertex 

 Like BFS, but it uses a priority queue 

 Priority is the weight of the edge to the vertex 

 Also need to keep track of which edge we used 

 Always picks smallest edge to an unvisited vertex 

 Runtime is O(m log m) 

 O(m) Priority Queue operations at log(m) each 



Prim’s Algorithm Example 

This is our 

original 

weighted 

graph. The 

numbers near 

the edges 

indicate their 

weight. 



Prim’s Algorithm Example 

Vertex D has 
been 
arbitrarily 
chosen as a 
starting point. 
Vertices A, B, E 
and F are 
connected to D 
through a 
single edge. A 
is the vertex 
nearest to D 
and will be 
chosen as the 
second vertex 
along with the 
edge AD. 



Prim’s Algorithm Example 

The next 
vertex chosen 
is the vertex 
nearest to 
either D or A. 
B is 9 away 
from D and 7 
away from A, 
E is 15, and F 
is 6. F is the 
smallest 
distance 
away, so we 
highlight the 
vertex F and 
the arc DF. 



Prim’s Algorithm Example 

The algorithm 

carries on as 

above. Vertex 

B, which is 7 

away from A, 

is highlighted. 



Prim’s Algorithm Example 

End Result 

 

 

Notice how 
each vertex 
has at least 1 
edge 
connecting to it 
and that the 
edge is the 
least of the 
edges 
connected to 
the vertex. 



Kruskal’s Algorithm 

 

 Idea: Find MST by connecting forest components using 
shortest edges  

 Process edges from least to greatest 

 Initially, every node is its own component 

 Either an edge connects two different components or it 
connects a component to itself 
 Add an edge only in the former case 

 Picks smallest edge between two components 

 O(m log m) time to sort the edges 
 Also need the union-find structure to keep track of components, 

but it does not change the running time 



Kruskal’s Algorithm Example 

This is our 

original 

graph. The 

numbers near 

the arcs 

indicate their 

weight. None 

of the arcs 

are 

highlighted. 

∞ 



Kruskal’s Algorithm Example 

AD and CE 

are the 

shortest arcs, 

with length 5, 

and AD has 

been 

arbitrarily 

chosen, so it is 

highlighted. 

 



Kruskal’s Algorithm Example 

CE is now the 

shortest arc 

that does not 

form a cycle, 

with length 5, 

so it is 

highlighted as 

the second 

arc. 

 



Kruskal’s Algorithm Example 

The next arc, 

DF with length 

6, is 

highlighted 

using much the 

same method. 



Kruskal’s Algorithm Example 

The next-shortest 
arcs are AB and 
BE, both with 
length 7. AB is 
chosen 
arbitrarily, and is 
highlighted. The 
arc BD has been 
highlighted in 
red, because 
there already 
exists a path (in 
green) between 
B and D, so it 
would form a 
cycle (ABD) if it 
were chosen. 



Kruskal’s Algorithm Example 

The process 
continues to 
highlight the 
next-smallest arc, 
BE with length 7. 
Many more arcs 
are highlighted 
in red at this 
stage: BC 
because it would 
form the loop 
BCE, DE because 
it would form the 
loop DEBA, and 
FE because it 
would form 
FEBAD. 



Kruskal’s Algorithm Example 

Finally, the 

process 

finishes with 

the arc EG of 

length 9, and 

the minimum 

spanning tree 

is found. 



Dijkstra’s Algorithm 

 Compute length of shortest path from source vertex 

to every other vertex 

 Works on directed and undirected graphs 

 Works only on graphs with non-negative edge 

weights 

 O(m log m) runtime when implemented with Priority 

Queue, same as Prim’s 



Dijkstra’s Algorithm 

 Similar to Prim’s algorithm 

 Difference lies in the priority 

 Priority is the length of shortest path to a visited vertex 

+ cost of edge to unvisited vertex 

 We know the shortest path to every visited vertex  

 On unweighted graphs, BFS gives us the same result 

as Dijkstra’s algorithm 



Dijkstra’s Algorithm 

1. Assign to every node a distance value. Set it to zero for our 

initial node and to infinity for all other nodes. 

2. Mark all nodes as unvisited. Set initial node as current. 

3. For current node, consider all its unvisited neighbors and 

calculate their tentative distance (from the initial node) If this 

distance is less than the previously recorded distance, 

overwrite the distance. 

4. When we are done considering all neighbors of the current 

node, mark it as visited. A visited node will not be checked 

ever again; its distance recorded now is final and minimal. 

5. If all nodes have been visited, finish. Otherwise, set the 

unvisited node with the smallest distance (from the initial 

node) as the next "current node" and continue from step 3. 



Dijkstra’s Algorithm Example 

Initial 

distances set 

to 0 for initial 

node and ∞ 

for all other 

nodes.  

0 

∞ 

∞ 

∞ 

∞ 

∞ 

∞ 



Dijkstra’s Algorithm Example 

Set distances 

for all nodes 

connected to 

the initial 

node. Mark 

the initial 

node as done 

(red). 

0 

5 

∞ 

∞ 

7 

∞ 

∞ 



Dijkstra’s Algorithm Example 

Select the node is 

with the smallest 

distance that isn’t 

done, and update the 

distances to its 

neighbors.  

 

F = 11 : 5 + 6 = 11 

 

B = 7: 5 + 9 = 14 > 

7  

 

E = 20: 5 + 15 = 20 

 

Mark D as visited. 

0 

5 

11 

∞ 

7 

20 

∞ 



Dijkstra’s Algorithm Example 

Set the current 
node to B. 

 

E = 14: 7 + 7 
= 14 

 

C = 15: 7 + 8 
= 15 

 

Mark B as 
visited. 

0 

5 

11 

∞ 

7 

14 

15 



Dijkstra’s Algorithm Example 

Repeat the 
process: 

 

E = 14: 11 + 
8 = 19 > 14 

 

G = 22: 11 + 
11 = 22 

 

Mark F as 
visited 

 

 

0 

5 

11 

22 

7 

14 

15 



Dijkstra’s Algorithm Example 

Repeat the 

process: 

 

C = 15: 14 + 5 

= 19 > 15 

 

G = 22: 14 + 9 

= 23 > 22 

 

Mark E as 

visited 

 

 

0 

5 

11 

22 

7 

14 

15 



Sorting 



http://www.sorting-algorithms.com/ 

http://www.sorting-algorithms.com/
http://www.sorting-algorithms.com/
http://www.sorting-algorithms.com/


Question Time 

 Now we’ll take a 5-10 minute break 

 We’ll begin Q&A session afterwards 


