

## Overview: Reasoning about programs

$\square$ Recursion
$\square$ A programming strategy that solves a problem by reducing it to simpler or smaller instance(s) of the same problem
$\square$ Induction
$\square$ A mathematical strategy for proving statements about natural numbers $0,1,2, \ldots$ (or more generally, about inductively defined objects)
$\square$ They are very closely related
$\square$ Induction can be used to establish the correctness and complexity of programs

## Overview: Reasoning about programs

$\square$ Our broad problem: code is unlikely to be correct if we don't have good reasons for believing it works

- We need clear problem statements
$\square$ And then a rigorous way to convince ourselves that what we wrote solves the problem
$\square$ But reasoning about programs can be hard
$\square$ Especially with recursion, concurrency
$\square$ Today focus on recursion


## Defining Functions

$\square$ It is often useful to describe a function in different ways
$\square$ Let $S:$ int $\rightarrow$ int be the function where $S(n)$ is the sum of the integers from 0 to $n$. For example,

$$
S(0)=0 \quad S(3)=0+1+2+3=6
$$

- Definition: iterative form
$\square S(n)=0+1+\ldots+n$

$$
=\sum_{i=0}^{n} i
$$

$\square$ Another characterization: closed form $-S(n)=n(n+1) / 2$

## Sum of Squares

$\square$ A more complex example
$\square$ Let $S Q:$ int $\rightarrow$ int be the function that gives the sum of the squares of integers from 0 to n :
$S Q(0)=0$

$$
S Q(3)=0^{2}+1^{2}+2^{2}+3^{2}=14
$$

$\square$ Definition (iterative form):

$$
S Q(n)=0^{2}+1^{2}+\ldots+n^{2}
$$

$\square$ Is there an equivalent closed-form expression?

## Closed-Form Expression for SQ(n)

$\square$ Sum of integers between 0 through $n$ was $n(n+1) / 2$ which is a quadratic in $n$ (that is, $O\left(n^{2}\right)$ )

- Inspired guess: perhaps sum of squares of integers between 0 through n is a cubic in n
$\square$ Conjecture: $S Q(n)=a n^{3}+b n^{2}+c n+d$
where $a, b, c, d$ are unknown coefficients
$\square$ How can we find the values of the four unknowns?
Idea: Use any 4 values of $n$ to generate 4 linear equations, and then solve


## Finding Coefficients

$S Q(n)=0^{2}+1^{2}+\ldots+n^{2}=a n^{3}+b n^{2}+c n+d$

```
Use n=0,1,2,3
    \squareS(0)=, 0 =a.0 + b.0 + c.0 + d
    \squareSQ(1)= 1 =a\cdot1 +b\cdot1+c\cdot1+d
    \squareSQ(2)= 5 = a 8 + b}\cdot4+c\cdot2+
    \squareSQ(3) = 14 =a.27 + b.9 + c.3 +d
    \squareSolve these 4 equations to get
        |-a=1/3 b=1/2 c= 1/6 d=0
```


## One Approach

$\square$ Try a few other values of $n$ to see if they work.
$\square$ Try $n=5: \quad S Q(n)=0+1+4+9+16+25=55$

- Closed-form expression: 5•6•11/6=55
- Works!
$\square$ Try some more values...
- We can never prove validity of the closed-form solution for all values of $n$ this way, since there are an infinite number of values of $n$

Are These Two Functions Equal?
$\square S Q_{r}(r=$ recursive $)$
$S Q_{r}(0)=0$

$$
S Q_{r}(n)=S Q_{r}(n-1)+n^{2}, n>0
$$

$\square S Q_{c}$ (c = closed-form)

$$
S Q_{c}(n)=n(n+1)(2 n+1) / 6
$$

Is the Formula Correct?
$\square$ This suggests

$$
\begin{aligned}
S Q(n) & =0^{2}+1^{2}+\ldots+n^{2} \\
& =n^{3} / 3+n^{2} / 2+n / 6 \\
& =n(n+1)(2 n+1) / 6
\end{aligned}
$$

Question: Is this closed-form solution true for all n ?
$\square$ Remember, we only used $\mathrm{n}=0,1,2,3$ to determine these coefficients

- We do not know that the closed-form expression is valid for other values of $n$


## A Recursive Definition

$\square$ To solve this problem, let's express $S Q(n)$ in a different way: $\square S Q(n)=0^{2}+1^{2}+\ldots+(n-1)^{2}+n^{2}$

- The part in the box is just $S Q(n-1)$
$\square$ This leads to the following recursive definition
$\square S Q(0)=0$
$\square S Q(n)=S Q(n-1)+n^{2}, n>0 \quad$ Base Case
Thus,
$\square S Q(4)=S Q(3)+4^{2}=S Q(2)+3^{2}+4^{2}=S Q(1)+2^{2}+3^{2}+$ $4^{2}=S Q(0)+1^{2}+2^{2}+3^{2}+4^{2}=0+1^{2}+2^{2}+3^{2}+4^{2}$


## Induction over Integers

$\square$ To prove that some property $\mathrm{P}(\mathrm{n})$ holds for all integers $n \geq 0$,

1. Basis: Show that $P(0)$ is true
2. Induction Step: Assuming that $P(k)$ is true for an unspecified integer $k$, show that $P(k+1)$ is true
$\square$ Conclusion: Because we could have picked any $k$, we conclude that $\mathrm{P}(\mathrm{n})$ holds for all integers $\mathrm{n} \geq 0$

$\square$ Define $P(n)$ as $S Q_{r}(n)=S Q_{c}(n)$

$\square$ Prove $\mathrm{P}(0)$
$\square$ Assume $P(k)$ for unspecified $k$, and then prove $P(k+1)$ under this assumption

## Better Argument

## $\square$ Argument:

- Domino 0 falls because we push it over (Base Case or Basis)
- Assume that domino k falls over (Induction Hypothesis)
- Because domino k's length is larger than inter-domino spacing, it will knock over domino k+1 (Inductive Step)
- Because we could have picked any domino to be the $k^{\text {th }}$ one, we conclude that all dominoes will fall over (Conclusion)
$\square$ This is an inductive argument
$\square$ This version is called weak induction
- There is also strong induction (later)
$\square$ Not only is this argument more compact, it works for an arbitrary number of dominoes!

Proof (by Induction)

```
R Recall: SQ (0)=0
                                    Recall: SQ (O)=0 
            SQ}(n)=n(n+1)(2n+1)/
Let P(n) be the proposition that }S\mp@subsup{Q}{r}{}(n)=S\mp@subsup{Q}{c}{}(n
\square Basis: P(0) holds because SQ ( }0)=0\mathrm{ and SQ ( }0)=0\mathrm{ by definition
\square Induction Hypothesis: Assume SQ (k)=SQ
- Inductive Step:
    SQ}(k+1)\stackrel{P}{=}S\mp@subsup{Q}{r}{}(k)+(k+1\mp@subsup{)}{}{2}\quad\mathrm{ by definition of SQ }\mp@subsup{Q}{r}{}(k+1)
    SQ
            by the Induction Hypothesis
            =(k+1)(k+2)(2k+3)/6
\square Conclusion: }\mp@subsup{SQQ}{r}{\prime}(n)=S\mp@subsup{Q}{c}{}(n)\mathrm{ for all n & 0
```


## Another Example

```
P Prove that 0+1+...+n = n(n+1)/2
\square Basis: Obviously holds for n = 0
\square Induction Hypothesis: Assume 0+1 + ...+k = k(k+1)/2
\square Inductive Step:
    0+1+\ldots+(k+1) = [0+1+\ldots+k]+(k+1) by def
        =k(k+1)/2 + (k+1) by I.H.
        =(k+1)(k+2)/2 algebra
```

    \(\square\) Conclusion: \(0+1+\ldots+n=n(n+1) / 2\) for all \(n \geq 0\)
    Sometimes we are interested in showing some proposition is true for Sometimes integers $\geq b$
$\square$ Intuition: we knock over domino $b$, and dominoes in front get knocked over; not interested in $0,1, \ldots,(b-1)$

- In general, the base case in induction does not have to be 0
- If base case is some integer $b$
$\square$ Induction proves the proposition for $n=b, b+1, b+2, \ldots$
ㅁ. Does not say anything about $n=0,1, \ldots, b-1$


## Weak Induction: Nonzero Base Case

$\square$ Claim: You can make any amount of postage above $8 \phi$ with some combination of $3 \phi$ and $5 \phi$ stamps
$\square$ Basis: True for $8 \phi: 8=3+5$
$\square$ Induction Hypothesis: Suppose true for some k $\varepsilon 8$

- Inductive Step:
- If used a $5 \phi$ stamp to make $k$, replace it by two $3 \phi$ stamps. Get $k+1$.
- If did not use a $5 \phi$ stamp to make $k$, must have used at least three $3 \phi$ stamps. Replace three $3 \phi$ stamps by two $5 \phi$ stamps. Get $k+1$.
$\square$ Conclusion: Any amount of postage above $8 \not \subset$ can be made with some combination of $3 申$ and $5 \phi$ stamps


## A Tiling Problem

$\square$ A chessboard has one square cut out of it
$\square$ Can the remaining board be tiled using tiles of the shape shown in the picture (rotation allowed)?
$\square$ Not obvious that we can use induction!



## $4 \times 4$ Case

- Divide the $4 \times 4$ board into four $2 \times 2$ sub-boards
$\square$ One of the four sub-boards has the missing piece
- By the I.H., that sub-board can be tiled since it is a $2 \times 2$ board with a missing piece
$\square$ Tile center squares of three remaining sub-boards as shown
- This leaves three $2 \times 2$ boards, each with a missing piece
- We know these can be tiled by the Induction Hypothesis


$$
2^{\mathrm{k}+1} \times 2^{\mathrm{k}+1} \text { case }
$$

$\square$ Divide board into four sub-boards and tile the center squares of the three complete sub-boards
$\square$ The remaining portions of the sub-boards can be tiled by the I.H. (which assumes we can tile $2^{k} \times 2^{k}$ boards)


## Tiling Example (Poor Strategy)

$\square$ Let's try a different induction strategy
$\square$ Proposition
$\square$ Any $\mathrm{n} \times \mathrm{n}$ board with one missing square can be tiled
$\square$ Problem

- A $3 \times 3$ board with one missing square has 8 remaining squares, but our tile has 3 squares; tiling is impossible
$\square$ Thus, any attempt to give an inductive proof of this proposition must fail
$\square$ Note that this failed proof does not tell us anything about the $8 \times 8$ case


## When Induction Fails

Sometimes an inductive proof strategy for some proposition may fail
$\square$ This does not necessarily mean that the proposition is wrong

- It may just mean that the particular inductive strategy you are using is the wrong choice
$\square$ A different induction hypothesis (or a different proof strategy altogether) may succeed


## A Seemingly Similar Tiling Problem

$\square$ A chessboard has opposite corners cut out of it. Can the remaining board be tiled using tiles of the shape shown in the picture (rotation allowed)?
$\square$ Induction fails here. Why? (Well...for one thing, this board can't be tiled with dominos.)


## Conclusion



