

Representations of Graphs

Adjacency List Adjacency Matrix

Adjacency Matrix or Adjacency List?

$\mathrm{n}=$ number of vertices
$m=$ number of edges
$d(u)=$ outdegree of u
\square Adjacency Matrix

- Uses space $O\left(\mathrm{n}^{2}\right)$
-Can iterate over all edges in time $O\left(\mathrm{n}^{2}\right)$
- Can answer "Is there an edge
from u to v ?" in $\mathrm{O}(1)$ time
-Better for dense graphs (lots of edges)
- Adjacency List
- Uses space O(m+n)
- Can iterate over all edges in time $\mathrm{O}(\mathrm{m}+\mathrm{n})$
- Can answer "Is there an edge from u to v?" in O(d(u)) time
- Better for sparse graphs (fewer edges)

Shortest Paths in Graphs

םFinding the shortest (min-cost) path in a graph is a problem that occurs often
口Find the shortest route between Ithaca and West Lafayette, IN
-Result depends on our notion of cost

- Least mileage
- Least time
- Cheapest
- Least boring
-All of these "costs" can be represented as edge weights -How do we find a shortest path?

Dijkstra's Algorithm

Dijkstra's Algorithm

Proof of Correctness

The following are invariants of the loop:

- X is the set of marked nodes
- For $u \in X, D(u)=d(s, u)$
- For $u \in X$ and $v \notin X, d(s, u) \leq d(s, v)$
- For all $u, D(u)$ is the length of the shortest path from s to u such that all nodes on the path (except possibly u) are in X

Implementation:

- Use a priority queue for the nodes not yet taken - priority is $\mathrm{D}(\mathrm{u})$

Facts About Trees

- $|\mathrm{E}|=|\mathrm{V}|-1$
- connected
- no cycles

In fact, any two of these properties imply the third, and imply that the graph is a tree

Undirected Trees

- An undirected graph is a tree if there is exactly one simple path between any pair of vertices

Spanning Trees

A spanning tree of a connected undirected graph (V, E) is a subgraph $\left(\mathrm{V}, \mathrm{E}^{\prime}\right)$ that is a tree

Finding a Spanning Tree

A subtractive method

- Start with the whole graph - it is connected
- If there is a cycle, pick an edge on the cycle, throw it out - the graph is still connected (why?)
- Repeat until no more cycles

Finding a Spanning Tree

A subtractive method

- Start with the whole graph - it is connected
- If there is a cycle, pick an edge on the cycle, throw it out - the graph is still connected (why?)
- Repeat until no more cycles

Finding a Spanning Tree

An additive method

- Start with no edges - there are no cycles
- If more than one connected component, insert an edge between them - still no cycles (why?)
- Repeat until only one
 component

Repeat until only one
 component

Minimum Spanning Trees

- Suppose edges are weighted, and we want a spanning tree of minimum cost (sum of edge weights)
- Some graphs have exactly one minimum spanning tree. Others have multiple trees with the same cost, any of which is a minimum spanning tree

Finding a Spanning Tree

An additive method

- Start with no edges - there are no cycles
 component

Minimum Spanning Trees

- Suppose edges are weighted, and we want a spanning tree of minimum cost (sum of edge weights)
- Useful in network routing \& other applications
- For example, to
 stream a video

3 Greedy Algorithms

A. Find a max weight edge - if it is on a cycle, throw it out, otherwise keep it

3 Greedy Algorithms

A. Find a max weight edge - if it is on a cycle, throw it out, otherwise keep it

3 Greedy Algorithms

A. Find a max weight edge - if it is on a cycle, throw it out, otherwise keep it

3 Greedy Algorithms

A. Find a max weight edge - if it is on a cycle, throw it out, otherwise keep it

3 Greedy Algorithms

B. Find a min weight edge - if it forms a cycle with edges already taken, throw it out, otherwise keep it

Kruskal's algorithm

3 Greedy Algorithms

B. Find a min weight edge - if it forms a cycle with edges already taken, throw it out, otherwise keep it

Kruskal's algorithm

3 Greedy Algorithms

B. Find a min weight edge - if it forms a cycle with edges already taken, throw it out, otherwise keep it

Kruskal's algorithm

3 Greedy Algorithms

C. Start with any vertex, add min weight edge extending that connected component that does not form a cycle
rim's algorithm (reminiscent of Dijkstra's algorithm)

3 Greedy Algorithms

C. Start with any vertex, add min weight edge extending that connected component that does not form a cycle

Prim's algorithm (reminiscent of Dijkstra's algorithm)

3 Greedy Algorithms

C. Start with any vertex, add min weight edge extending that connected component that does not form a cycle

Prim's algorithm (reminiscent of Dijkstra's algorithm)

3 Greedy Algorithms

C. Start with any vertex, add min weight edge extending that connected component that does not form a cycle

Prim's algorithm
(reminiscent of Dijkstra's algorithm)

3 Greedy Algorithms

C. Start with any vertex, add min weight edge extending that connected component that does not form a cycle

Prim's algorithm (reminiscent of Dijkstra's algorithm)

