GRAPHS

Lecture 18
CS2110 — Fall 2009

These are not Graphs
[

- [

...not the kind we mean, anyway

Applications of Graphs

[R5l

1 Communication networks

o Routing and shortest path problems
o Commodity distribution (flow)

o Traffic control

1 Resource allocation

1 Geometric modeling

[=

10/20/2009

Announcements

B2

tPrelim 2: Two and a half weeks from now
11 Tuesday, Nov 17, 7:30-9pm
11 Uris GO1 Auditorium

DExam conflicts

1 Email Ken or Maria soon so that we can plan ahead

0Old exams are available for review on the course website

These are Graphs

2y =

K3.3

oF

Graph Definitions

0 A directed graph (or digraph) is a pair (V, E) where
o Vis a set

0 Eis a set of ordered pairs (u,v) where u,y oV
= Usually require u v (i.e., no self-loops)

0 An element of V is called a vertex (pl. vertices) or
node

01 An element of E is called an edge or arc

0 | V]| = size of V, often denoted n
0 |E| = size of E, often denoted m

10/20/2009

Example Directed Graph (Digraph)

b

d
c
o
S

V ={a,b,c,de,f}
E={(ab), (ac), (ae), (b,c), (b,d), (b,e), (c,d),
(c.f), (d,e), (d)D), (&N}

V=6, |El=11

Example Undirected Graph

An is just like a directed graph,
except the edges are (sets) {u,v}
Example:)
d
@ f
V ={a,b,c,d,e,f}

E ={{ab}, {a.c}, {a.e}, {b,c}, {b.d}, {b.e}, {c.d}, {c.f},
{d.e}, {d.f}, {e,f}}

Some Graph Terminology

Vertices u and v are called the and of the directed edge
(u,v), respectively

Vertices u and v are called the of (u,v)

Two vertices are if they are connected by an edge

The of a vertex v in a directed graph is the number of
edges for which u is the source

The of a vertex v in a directed graph is the number of edges
for which v is the sink

The of a vertex u in an undirected graph is the number of
edges of which u is an endpoint

More Graph Terminology
N

A is a sequence V,Vy,Vy,..V,, of vertices such
that (v,v;;) EE,0<i<p-1
The is its number of edges

oVs

In this example, the length is 5
A path is if it does not repeat any vertices
A is a path vo,vy,vy,...,v, such that vy = v,

A cycle is if it does not repeat any
b

vertices except the first and last .
A graph is if it has no cycles %
A directed acyclic graph is called a : of

L

Is This a Dag?

Intuition:
If it's a dag, there must be a vertex with indegree zero
— why?

This idea leads to an algorithm

A digraph is a dag if and only if we can iteratively
delete indegree-0 vertices until the graph disappears

Is This a Dag?

b
d
c
o
S

If it's a dag, there must be a vertex with indegree zero
— why?

Intuition:

This idea leads to an algorithm

A digraph is a dag if and only if we can iteratively
delete indegree-0 vertices until the graph disappears

Is This a Dag?

b

e
Intuition:
If it's a dag, there must be a vertex with indegree zero
— why?

This idea leads to an algorithm

A digraph is a dag if and only if we can iteratively
delete indegree-0 vertices until the graph disappears

10/20/2009

Is This a Dag?

Intuition:
If it's a dag, there must be a vertex with indegree zero
— why?

This idea leads to an algorithm

A digraph is a dag if and only if we can iteratively
delete indegree-0 vertices until the graph disappears

Is This a Dag?

c
pAY

%
Intuition:
If it's a dag, there must be a vertex with indegree zero
— why?
This idea leads to an algorithm

A digraph is a dag if and only if we can iteratively
delete indegree-0 vertices until the graph disappears

Is This a Dag?

c
1%0'

—

%
Intuition:
If it's a dag, there must be a vertex with indegree zero
— why?
This idea leads to an algorithm

A digraph is a dag if and only if we can iteratively
delete indegree-0 vertices until the graph disappears

Is This a Dag?

/\

S
Intuition:
If it's a dag, there must be a vertex with indegree zero
— why?

This idea leads to an algorithm

A digraph is a dag if and only if we can iteratively
delete indegree-0 vertices until the graph disappears

Is This a Dag?

d

/\

S
Intuition:
If it's a dag, there must be a vertex with indegree zero
— why?

This idea leads to an algorithm

A digraph is a dag if and only if we can iteratively
delete indegree-0 vertices until the graph disappears

Is This a Dag?

of

Intuition:

If it's a dag, there must be a vertex with indegree zero
— why?

This idea leads to an algorithm

A digraph is a dag if and only if we can iteratively
delete indegree-0 vertices until the graph disappears

10/20/2009

Is This a Dag?

of

Intuition:

If it's a dag, there must be a vertex with indegree zero
— why?

This idea leads to an algorithm

A digraph is a dag if and only if we can iteratively
delete indegree-0 vertices until the graph disappears

Is This a Dag?

of

Intuition:

If it's a dag, there must be a vertex with indegree zero
— why?

This idea leads to an algorithm

A digraph is a dag if and only if we can iteratively
delete indegree-0 vertices until the graph disappears

Topological Sort

We just computed a of the dag

This is a numbering of the vertices such that all edges go
from lower- to higher-numbered vertices

1
3

2
o5

o

Useful in job scheduling with precedence constraints

Graph Coloring

A of an undirected graph is an
assignment of a color to each node such that no
two adjacent vertices get the same color

0 How many colors are needed to color this graph?

Graph Coloring

A of an undirected graph is an
assignment of a color to each node such that no
two adjacent vertices get the same color

0 How many colors are needed to color this graph?
o3

An Application of Coloring
2]
0 Vertices are jobs

o Edge (u,v) is present if jobs u and v each require
access to the same shared resource, and thus
cannot execute simultaneously

o Colors are time slots to schedule the jobs

o Minimum number of colors needed to color the
graph = minimum number of time slots required

X2

Planarity

o0 A graphis if it can be embedded in the
plane with no edges crossing

&R

o Is this graph planar?
Yes

Detecting Planarity
==

0 Kuratowski's Theorem

=

Ks Kss

0 A graph is planar if and only if it does not
contain a copy of K; or Kj 5 (possibly with other
nodes along the edges shown)

10/20/2009

Planarity
fem

if it can be embedded in the
plane with no edges crossing

il

o s this graph planar?

o A graph is

Planarity
=]

o0 A graph is if it can be embedded in the
plane with no edges crossing

o Is this graph planar?

Yes

The Four-Color Theorem
E=m

Every planar graph

is 4-colorable
(Appel & Haken, 1976)

Bipartite Graphs
0 A directed or undirected graph is if
the vertices can be partitioned into two sets
such that all edges go between the two sets
Traveling Salesperson
==
Boston
Ithaca Copenhagen
512
419 441
ORome
Atlanta
o Find a path of minimum distance that visits every
city
Adjacency Matrix or Adjacency List?
| 5]

0n = number of vertices
Adjacency List

Om = number of edges « Uses space O(m+n)

od(u) = degree of u =
number of edges
leaving u

oAdjacency Matrix
Uses space O(n?)
Can iterate over all edges in time
O(n?)
Can answer “Is there an edge from
uto v2" in O(1) time
Better for
edges)

graphs (lots of

= Can iterate over all edges in time
O(m+n)

= Can answer “Is there an edge from
uto v?" in O(d(u)) time

= Better for graphs (fewer
edges)

10/20/2009

Bipartite Graphs
=
0 The following are equivalent
G is bipartite
G is 2-colorable
G has no cycles of odd length
Representations of Graphs
| 3]
1 2
L
Adjacency List Adjacency Matrix
1 2 3 4
1 o 1 0 1
2)) 1 0
3 o o 0 0
4) 1 1 0
Graph Algorithms
| 3]

» Search
— depth-first search
— breadth-first search

* Shortest paths
—Dijkstra's algorithm

* Minimum spanning trees
—Prim's algorithm
—Kruskal's algorithm

Depth-First Search

« Follow edges depth-first starting from an
arbitrary vertex r, using a stack to remember
where you came from

* When you encounter a vertex previously
visited, or there are no outgoing edges,
retreat and try another path

« Eventually visit all vertices reachable from r

« If there are still unvisited vertices, repeat

* O(m) time

Depth-First Search

=2

Depth-First Search

=R

10/20/2009

Depth-First Search

XA

Depth-First Search

=2

Depth-First Search

=2

Depth-First Search

=R

Depth-First Search

A

Depth-First Search

=7

10/20/2009

Depth-First Search

A

Depth-First Search

A

Depth-First Search

=7

Depth-First Search

=7

Depth-First Search

=7

Depth-First Search

<A

10/20/2009

Depth-First Search

=7

Depth-First Search

A

Depth-First Search

<A

Depth-First Search

<A

Depth-First Search

XA

Depth-First Search

XA

10/20/2009

Depth-First Search

<A

Depth-First Search

XA

Depth-First Search

XA

10

Depth-First Search

XA

Breadth-First Search

XA

Breadth-First Search

A

10/20/2009

Breadth-First Search

» Same, except use a queue instead of a
stack to determine which edge to explore

next

Breadth-First Search

<A

Breadth-First Search

A

11

Breadth-First Search

<A

Breadth-First Search

<A

Breadth-First Search

XA

10/20/2009

Breadth-First Search

A

Breadth-First Search

XA

Shortest Paths

Suppose you have a US Airways route map
with intercity distances. You want to know the
shortest distance from Ithaca to every city
served by US Airways.

This is known as the single-source shortest
path problem.

12

Shortest Paths

.4

n
!‘H
I
% o N
o
[N
o
©
N
&

.1 31
Digraph with Corresponding
edge weights matrix

Single-source shortest path problem: Given a graph
with edge weights w(u,v) and a designated vertex s,
find the shortest path from s to every other vertex
(length of a path = sum of edge weights)

Dijkstra's Algorithm
X 2.4

eLet X ={s}

—Xis the set of nodes for which we have already determined
the shortest path

«For each node u X, define D(u) = w(s,u)
-D(2)=2.4

-D(@3) =

-D@4)=15

Dijkstra's Algorithm

1 0.9

3

*Find u X such that D(u) is minimum, add it to X
—at that point, d(s,u) =D(u) u=4
« For each node v X such that ()u.v)DD E,

if D(u) + w(u,v) < D(v), set D(v) =D(u) + w(u,v)
-D(2)=2.4
_D(3) =
—D(4)=1.5=d(1,4)

10/20/2009

Shortest Paths
<= 2.4
1.5 0.9
4 - 3
« Let d(s,u) denote the distance (length of shortest
path) from s to u. In this example,
+d(1,1)=0
«d(1,2)=16
+d(1,3)=25
+d(1,4)=15
.o] .
Dijkstra’s Algorithm
X 2.4,
1.5 0.9
4, - 3
¢Find u X such that D(u) is minimum, add it to X
—at that point, d(s,u) = D(u)
* For each node v X such that ()u,v) OE,
if D(u) + w(u,v) < D(v), set D(v) = D(u) + w(u,v)
-D(2)=2.4
-D@3) =
-D(4)=15
Dijkstra's Algorithm

*Find u X such that D(u) is minimum, add it to X
—at that point, d(s,u) =D(u) u=4

« For each node v X such that ()u,v) OE,
if D(u) + w(u,v) < D(v), set D(v) = D(u) + w(u,v)

-D)=24 16
-DE)= 4%
—D() =15 =d(1,4)

13

Dijkstra's Algorithm

e Find u X such that D(u) is minimum, add it to X
—at that point, d(s,u) = D(u)

« For each node v X such that ()u,v OE,
if D(u) + w(u,v) < D(v), set D(v) = D(u) + w(u,v)

-D(2)=24 15

-bE)= 4K
—D(4)=1.5=d(1,4)

Dijkstra's Algorithm

e Find u X such that D(u) is minimum, add it to X
—at that point, d(s,u) = D(u) u=2

« For each node v X such that ()u,v) OE,
if D(u) + w(u,v) < D(v), set D(v) = D(u) + w(u,v)

-D(2)=24 16=d(1,2)

-D@)= 4K 25<
—-D(@)=15=d(1,4)

Dijkstra's Algorithm

*Find u X such that D(u) is minimum, add it to X
—at that point, d(s,u) =D(u) u=3

« For each node v X such that ()u.v)DD E,
if D(u) + w(u,v) < D(v), set D(v) =D(u) + w(u,v)

-D)=24 15=d(12)

-D@)= A< 25< d(1,3)
—D(4) = 1.5 = d(1,4)

10/20/2009

Dijkstra's Algorithm

e Find u X such that D(u) is minimum, add it to X
—at that point, d(s,u) = D(u) u=2

« For each node v X such that ()u,v) OE,
if D(u) + w(u,v) < D(v), set D(v) = D(u) + w(u,v)

-D()=24 $6=d(12)

-DE)= 4K
—D(4)=15=d(1,4)

Dijkstra's Algorithm

¢Find u X such that D(u) is minimum, add it to X
—at that point, d(s,u) = D(u)

* For each node v X such that ()u,v) OE,
if D(u) + w(u,v) < D(v), set D(v) = D(u) + w(u,v)

-D(2)=24 16=d(1.2)

-D@)= 4K 25<
—D(4)=15=d(1,4)

Dijkstra's Algorithm

Proof of correctness — show that the
following are invariants of the loop:

*For u@ X, D(u) = d(s,u)

eForul@ X and v X, d(s,u) 8 d(s,v)

For all u, D(u) is the length of the shortest path
from s to u such that all nodes on the path (except
possibly u) are in X

Implementation:
*Use a priority queue for the nodes not yet taken —
priority is D(u)

14

Complexity

« Every edge is examined once when its source is
taken into X

« Avertex may be placed in the priority queue
multiple times, but at most once for each
incoming edge

* Number of insertions and deletions into priority
gqueue =m + 1, where m = |E|

« Total complexity = O(m log m)

10/20/2009

Conclusion

* There are faster but much more complicated
algorithms for single-source, shortest-path problem
that run in time O(n log n + m) using something
called Fibonacci heaps

« It is important that all edge weights be nonnegative
— Dijkstra's algorithm does not work otherwise, we
need a more complicated algorithm called
Warshall's algorithm

 Learn about this and more in CS4820

15

